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Abstract

While performing complex assembly tasks or moving about in space, a space robot

should minimize the amount of propellant consumed. This thesis comprises an analytical

and experimental study of space robot locomotion and orientation without the use of

thrusters. The goal of this research is to design a robust control paradigm that will perform

thrusterless locomotion between two points on a structure, and to implement this paradigm

on an experimental robot.

A two-arm free-flying robot has been constructed which floats on a cushion of air to

simulate in two dimensions the drag-free, zero-g environment of space. The robot can

impart momentum to itself by pushing off from an external structure in a coordinated

two-arm maneuver, and can then reorient itself by activating a momentum wheel.

The controller design consists of two parts: a high-level strategic controller and a low-

level dynamic controller. The strategic controller, implemented as a finite-state machine,

monitors the state of the system and switches control laws asynchronously, based on discrete

events. Different specific control laws are implemented depending upon the configuration of

the system, the number of degrees of freedom, and the desired task. The dynamic controller

consists of a system of estimators, control laws, trajectory generators, and filters. For

example, whenever both arms are grasping an external structure, the strategic controller

installs a momentum controller which causes the linear and angular momentum of the

system to follow desired trajectories.

The control paradigm has been verified experimentally by commanding the robot to

push off from a structure with both arms, rotate 180 degrees while translating freely,

and then catch itself on another structure. This method, based on the idea of computed

torque, provides a linear feedback law in momentum and its derivatives for a system of

rigid bodies. By controlling momentum, a configuration-independent quantity, the robot

can leap precisely from one place to another, while accounting for nonlinear forces and

changing kinematic constraints. It ........ that this design approach can be easily

extended to three dimensions and to more complex robot configurations.

iv



V

v

V

To Noreen and Steve



v

V

v

%/

V

Acknowledgements

I wish to thank my principal advisor, Professor Robert H. Cannon Jr., for his enthusias-

tic support and guidance in this research, and for creating an environment at the Stanford

Aerospace Robotics Laboratory that fosters creativity and promotes fundamental research

in robotics. The atmosphere in the lab has enriched my stay at Stanford, and provides

a high standard on how research laboratories should be run. I would also like to thank

Professors Gene Franklin, Daniel DeBra, and Stephen Rock for their thorough review and

constructive criticisms of my work.

The successful outcome of this experimental thesis resulted from the hard work and

dedication of many gifted people. I am grateful to Gad Shelef for the design and fabrication

of the mechanical hardware; and to Yosi Drucker, Joseph Sch]esinger, and Godwin Zhang

for their efforts in the design and fabrication of the electronics.

My thanks go to my fellow students Marc Ullman and Ross Koningstein for the initial

design of the robot and many thoughtful discussions; Stan Schneider for implementing

a useful software environment for real-time control; Vince Chen and Edward Wilson for

their help and comments for sensor calibration; Robert Zanutta for his invaluable help in

fabrication and modelling; and Dennis Morse for teaching me the finer points of Unix system

administration. I also want to thank all the other graduate students in the Aerospace

Robotics Laboratory for their help and suggestions during my five years in the lab.

This research was funded by the National Aeronautics and Space Administration under

contract NCC 2-3333. Fellowship support was also given by the Hughes Aircraft Company.

Finally, I would like to thank my parents, William and Retha Jasper, for their loving

support and commitment to higher education. I am also grateful to my sister and brother,

Noreen and Steve, for their understanding and encouragement. It is to them that I dedicate

this dissertation.

v

vi



v

V

Contents

Abstract iv

Acknowledgements vi

List of Tables X

List of Figures xi

List of Symbols
Jgw

Xnl

1 Introduction

1.1 Motivation ....................................

1.2 Research Goals ..................................

1.3 Summary of Results ...............................

1.4 Reader's Guide ..................................

1

1

3

4

7

2 Experimental Hardware

2.1

2.2

2.3

2.4

2.5

2.6

Design Philosophy ................................

Mechanical Design ................................

Electrical Design .................................

9

9

11

13

Sensors ...................................... 15

Actuators ..................................... 19

Computer System ................................ 21

3 Derivations of the Equations of Motion for LEAP Vehicle 23

vfi



v

_r

V _

V

V

4

5

6

7

8

3.1 Introduction .... . ............................... 23

3.2 Definitions of the Generalized Speeds ...................... 24

3.3 Equations of Motion ............................... 28

3.4 Force Constraint ................................. 35

3.5 Some Properties of the Center of Mass ..................... 36

Strategic Control

4.1

4.2

4.3

4.4

4.5

39

Introduction .................................... 39

State Transition Graphs ............................. 40

Trajectory Generation .............................. 45

The Switching Problem ............................. 48

The Strategic Controller ............................. 49

Dynamic Control

5.1

5.2

5.3

5.4

5.5.

53

PD and PID controllers............................. 54

Computed-Torque Control ............................ 54

PracticalIssuesWith Computed Torque .................... 59

Bang-Bang Control ................................ 61

In-ParallelSystems ................................ 61

Experimental Results 63

6.1 An EntireLEAP Maneuver ........................... 63

6.2 JointPD and Bang-Bang Control ........................ 65

6.3 Momentum Control................................ 68

Extensions to Three Dimensions 71

7.1 Orientation in 3 Dimensions ........................... 71

7.2 Attitude Controlin 3 Dimensions ........................ 75

7.3 Design Criteria In Three Dimensions ...................... 78

Conclusions 80

8.1 Summary ..................................... 80

8.2 Recommendations for Future Research ..................... 82

vm""



A Calibration 85

A.1 Joint Angle Sensor Calibration ......................... 85

A.2 Joint Velocity Sensor Calibration ........................ 86

A.3 Model Parameter Measurements ........................ 87

B Air Bearing

Bibliography

88

91

_j

ix



V

List of Tables

V

2.1 Analog Cards ................................... 15

2.2 Watson Angular Rate Sensor Specifications.................. 17

2.3 LinearServo Accelerometer ....... •.................... 18

2.4 Arm and Base SpecificationsTable ....................... 20

2.5 Real-Time Computer Components ....................... 22

3.1 The partialvelocities............................... 29

3.2 The partialangularvelocities.......................... 29

4.1 StateTransitionTable .............................. 44

_,#rF--



v

List of Figures

1.1 Research Objective ................................ 4

1.2 Experimental System ............................... 5

2.1 Experimental Free-Flying Space Robot ..................... 10

2.2 Robot Schematic ............................ ..... 11

2.3 Gas Subsystem Schematic ............................ 14

2.4 Angular Rate Sensor ............................... 16

2.5 Arm Schematic .................................. 19

2.6 Gripper ...................................... 21

2.7 Hardware Architecture .............................. 22

3.1 Dynamic Model of the Mobile Space Robot .................. 25

4.1 Classic Digital Controller ............................ 40

4.2 Coordinated Leap Maneuver ........................... 41

4.3 State Transition Diagram for a Leap Maneuver ................ 42

4.4 State Transition Diagram for a Crawl Maneuver ............... 43

4.5 A Momentum Trajectory ............................ 49

5.1 Computed Torque ................................ 56

5.2 In-Parallel Systems ................................ 62

6.1 Coordinated Leap Maneuver ........................... 64

6.2 Nominal Slews of a PD Controller for a Two Link Arm ............ 66

6.3 Orientation and Angular Velocity of the Base for Minimum Time Slew . . . 67

6.4 Response To Step Input ............................. 68

6.5 Experimental vs. Simulation .......................... 70

7.1 Equivalence Class of Uulocated Shapes ..................... 72

r

"_ xi



A.1 Joint Calibration ................................. 86

B.1 Air Bearing .................................... 88

v

V

xii



%¢

List of Symbols

v_.j

#

g

h

m

ri

ro

P

Q

D

The air bearing

dynamic viscosity (18.0 #N/m _)

acceleration due to gravity (9.8 m/s 2)

thickness of air gap (50.8 _m nominal)

total mass of vehicle (75.78 kg)

plenum radius (50.8 ram)

base radius (241.3 ram)

pressure on the plate

steady state flow rate through air bearing

viscous drag on the air bearing

State variables and coordinates

Ui

$i

sij

generalized coordinate

generalized speed

abbreviation for sin(q_)

abbreviation for sin(q_ % qj)

PRECEDING PAGE BLANK NOT FILMED



ci

clj

mi

L_j

AaP,

A_P_

Ac_B

AvP,

f tip

Ars

M

T

Y

c

L

H

abbreviation for cos(qi)

abbreviation for cos(q/+ qj)

mass of body i

length of body j of link i

acceleration vector of point Pi in reference frame A

velocity vector of point Pi in reference frame A

angular velocity vector of body B in reference frame A

the rth partial velocity vector of point 19i in reference frame A

the rth partial angular velocity vector of body B in reference frame A

4 × n vector of forces at the tips of the arm

nonholonimic constraint matrix

n x n Mass Matrix

constrained mass matrix

tranformation matrix from torques to generalized forces

constrained tranformation matrix from torques to generalized forces

n x n transformation matrix from q to

vector of Coriolis and centrifugal forces

constrained vector of Coriolis and centrifugal forces

linear momentum vector

angular momentum vector

xlv



%./

Acronyms

t_

v

ACV

ARL

CMG

DAC

DOF

DSP

EKF

EOM

FLOPS

GNU

GPS

LED

MTBF

PID

RVDT

SCARA

SCFH

SMD

SRMS

ZOH

Air Cushion Vehicle

Stanford UniversityAerospace Robotics Laboratory

Control Moment Gyros

Digitalto Analog Converter

Degrees ofFreedom

DigitalSignalProcessor

Extended Kalma_ Filter

Equations of Motion

Floating-Point Operations Per Second (a measure of computer speed)

Gnu Not Unix, Acronym of the Free Software Foundation

Global Positioning System

Light Emitting Diode

Mean Time Between Failure

Proportional Integral Derivative error feedback control

Rotary Variable Differential Transformer

Selective Compliance Assembly Robot Arm

Standard Cubic foot per Hour

Surface Mounted Device

Space Shuttle Remote Manipulator System

Zero Order Hold

XV



Chapter 1

i V

Introduction

This dissertation describes the LEAP (Locomotion Enhancement via Arm Push-off) project,

conducted at The Stanford University Aerospace Robotics Laboratory (ARL) during the

period 1986-1990.

1.1 Motivation

Much of the recent work in robotics has assumed a priori that the desired task is within the

workspace of the robot. This assumption is clearly evident for all fixed-base robots, whether

they be bolted to the factory floor or to the cargo bay of the space shuttle. A fixed-base

robot is ideally suited to perform repetitive tasks in a highly structured environment.

Unfortunately, this is not the situation in space, where the environment is unstructured

and the tasks are varied. For example, building or repairing a space-station requires the

ability to perform a myriad of different tasks at different locations. Many missions that

the astronauts are called upon to perform require mobility, such as repairing a damaged

satellite. Therefore, a space robot must be mobile to perform different tasks at various

locations. If space robots are to be mobile, then one must ask the question: "What are

good ways for a robot to move from one place to another in space".

The ways a robot can move through space can be divided into two types: Those that

use propulsion as the primary means for imparting momentum to the robot, and those

that do not. For these two types, this section will briefly examine the issues involved in

imparting momentum to a space vehicle and reorienting it.
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Thrusters as a primary means of locomotion Historically, thrusters have been the

only method employed to relocate space vehicles. The reason for their exclusive use is

because expelling propellant is the only way for a totally isolated vehicle to impart mo-

mentum to itself. This capability comes with three disadvantages, namely: Propellant is a

finite resource that must be transported into space; the propellant may impact or contam-

inate the surrounding environment, damaging sensitive equipment; and use of nonlinear

on-off thrusters limits the degree of achievable precision in pointing and positioning.

On the other hand, in a multi-body environment, one can reduce or diminate thrusters

by pushing off from and landing on different structures. Thrusters then need only be

employed for mid-course correction or during emergency situations, thereby reducing the

total amount of propellant consumed. This is a' very natural and intuitive approach to

space locomotion, and is the way humans move around in space.

Thrusterless Attitude Control Thrusterless attitude control schemes use conservation

of angular momentum to change orientation without imparting angular momentum to the

system. This principle was first discovered by Newton [23] around 1666. One of the earlist

references for using this principle in spacecraft orientation is due to Hohmann [12] in 1925.

Hohmann advocates using only one thruster on a spacecraft to save weight. To demonstrate

that a single thruster can be oriented in any direction, there is a picture of two astronauts

crawling along a circular ladder to change the spacecraft's orientation.

Since the early ?O's, satellites have used momentum wheels and magnetic coils to control

spacecraft attitude [38]. While these techniques can control only the attitude (and not the

location) of the vehicle, they do so with the advantage of converting electrical energy 1

into torque without using gas propellants. Longrnan [201 explores the possibility of using

reaction wheels on a space vehicle with a robotic arm to stabilize vehicle attitude only. In

this way, the base of the robot arm can be treated as inertially fixed, although Longman

does not compensate for the linear motion of the base due to the motion of the arm.

A unified approach to space robotic locomotion needs to address two issues: controlling

the location of the mass center of the robot, and controlling the orientation about the mass

center of the robot. The first issue involves controlling linear momentum, whereas the

l Electrical energy is obtainable from the sun by photo voltaic cells, and is therefore a replenishable

resource
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second issueinvolvescontrollingthe geometricconfigurationofthe robot.These issueswill

be dealtwith in detailthroughout thisthesis.

1.2 Research Goals

The goalofthisprojectisto study the dynamics and controlissuesinvolvedinthrusterless

locomotion, and to demonstrate experimentallythat a free-flyingmulti-arm robot can

accuratelyreposition/reorientitselfwhile pushing off"from another body (e.g. a space

station)ratherthan using thrusters.The aim isnot to constructa space qualifiedrobot,

but ratherto demonstrate in two dimensions in the laboratorya design philosophythat

willeasilyextend to threedimensionsin space.

More specifically,the goalsofthisprojectare to:

• Develop a controlparadigm and simplealgorithmsthataidinthrusterlesslocomotion.

• Achieve smooth switchingbetween controllaws during abrupt changes in kinematic

configuration.A challengingaspectof thisprojectisto controla nonlinearplant

with changing degreesoffreedom.

• Construct an autonomous free-flyingmulti-arm robot thatsimulatesthe zero-gdrag-

freeenvironment ofspace.

• Verify the design experimentally.

The Experiment Figure 1.1 depicts the conceptual goal of this research: to move the

robot accurately from one place to another without using thrusters. To demonstrate faith-

fully the drag-free zero-g space environment, a second-generation air cushion vehicle (ACV)

was designed and built, with many ideas drawn from previous ACV experiments done at

Stanford [1]. These vehicles float on a cushion or air on a very fiat granite table. Unlike

previous ACV's, our current versions have two SCARA 2 arms to allow cooperative manip-

ulation. A photograph of the experimental hardware is shown in Fig 1.2. At the end of

each arm is a small robotic hand that can grasp a cylindrical bar affixed to the side of a

granite table. The hand is instrumented with force sensors in its palm and pneumatically

_SCARA is an acronym for Selective Compliance Assembly Robot Arm. Such robot arms are designed

to be very stiff in the vertical axis while being very compliant or easy to move in the horizontal plane [21].
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Figure 1.1: Research Objective

The robot can push off from one end of the table, rotate, and catch itself

at the other end without using thrusters.

actuated finger. There is also a photo emitter/detector pair located between the palm and

finger to sense the bar. Located in the center of the vehicle is a momentum wheel to en-

able turning while in the free-floating configuration. In the free-floating configuration, the

robot possesses eight degrees of freedom. With both arms grasping the bar (closed-chain

configuration), the number of degrees of freedom drops to four.

1.3 Summary of Results

1.3.1 System Capabilities

The ability for the robot to position itself using only electric motors h_s been demonstrated.

During the three phases of the LEAP maneuver (Push-off, Coast, Docking), a high level

strategic controller monitors the system to insure smooth transitions between the phases.

While the robot is grasping the bar, the robot can follow trajectories in "momentum" space

with a decoupled closed-kinematic-chain controller.

When the bar is released, the robot responds to changes in the configuration and realizes

that linear momentum is no longer controllable. Using a combination of bang-bang and
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Figure 1.2: Experimental System

Overall view of the experimental setup. The two-arm robot _oats on an

air cushion to simulate the space environment. The vehicle is autonomous,

and has onboard power and high-pressure gas. Two robotic hands grasp

the bar before and during push-off.

v
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joint PD control, the free-floating robot can orient itself to any desired angle using a

momentum wheel.

Finally, when two grasp points are encountered, the control laws are changed yet again

to account for the discontinuous change in plant dynamics. During docking, the robot

performs a soft-landing by bringing the momentum of the system to zero exponentially.

The operator only commands a desired launch direction and catch angle. All the other

state dependent parameters are determined by the strategic controller. The system also

possesses onboard error detection logic. Upon determining that an actuator has failed, the

strategic controller attempts to put the robot into a safe state.

1.3.2 Contributions

This research makes the following contributions to the field of automatic control, in the

particular context of free-flying robots.

Specifically, this

- Cause a system of rigid bodies to follow a desired momentum trajectory. This

allows for precise control of the position and velocity of the mass center for a

system of rigid bodies in open-chain or closed-chain configurations.

- Allow for smooth transitions between open-chain and closed-chain configura-

tions. When a system undergoes abrupt changes in kinematic (holonomic) con-

straints, the number of degrees of freedom abruptly changes. Since the momen-

tum of the system can be formulated to be independent of the geometry, changes

in kinematic constraints do not affect the controller.

- Formulate the rate of convergence to the trajectory as a linear error equation.

For rigid-body systems, the error equations take the form of decoupled second-

order systems. The poles of the error equations can be chosen using classical

design techniques.

• A control paradigm has been developed to allow switching between different con-

trol laws during various phases of a task. This is accomplished by splitting up the

controller into a high-level strategic controller and a low-level dynamic controller.

• A new approach to using momentum control has been developed.

approach, called system momentum control, allows the following:
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• This control paradigm, implemented experimentally on a free floating space robot,

has accomplished the following tasks:

- Pushing off from a structure in a coordinated two arm maneuver.

- Rotating the vehicle with the momentum wheel while controlling the configura-

tion of the arms.

- Landing on another structure.

Practically, this controller allows the robot to move and orient itself with a minimum

amount of propellant. Combining system-momentum control with Cartesian-space

control will allow for more general types of tasks such as crawling along a space

structure.

A free-floating space robot has been constructed. This robot is an autonomous vehicle

with onboard power, gas thrusters, sensors, and actuators, which floats on an air

bearing to simulate in two dimensions the drag-free zero-g environment of space.

Versions of this robot will also be used in follow-on research projects.

1.4 Reader's Guide

This dissertation is divided into eight chapters. The following paragraphs summerize each

chapter in the thesis.

Chapter One provides motivation for studying thrusterless robotic locomotion, the

research goals, and a summary of results. The experiment is briefly described along with

a list of contributions.

Chapter Two describes a general design philosophy and overview of the mechanical and

electrical design. Following the overview is a more detailed discussion of each sensor and

actuator. Specifications on the various sensors are included when deemed appropriate.

Chapter Three includes a derivation of the equations of motion for a two-arm free-flying

robot. This chapter can be skipped upon first reading, while referencing the appropriate

equations when necessary. It is included here for completeness, and as a reference for

further research.

Chapter Four addresses the issues of strategic control, and how higher level task spec-

ifications are applied to locomotion. This chapter also includes a brief di:_ussion on the
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implicationsof asynchronous switchingof dynamic controllers.Chapter Four concludes

with a descriptionofan implementation of a strategiccontroller.

Chapter Five describesthe variouscontrollaws used in the experiment. Past work in

computed-torque controlisdiscussed,and a new controller,calledsystem momentum con-

trolisintroduced.Momentum controlisderived,followedby a discussionon assumptions

and limitationsforcomputed torque.

Chapter Six presentsexperimentalresults.A comparison between simulationand ex-

periment ispresentedto validatethe model and design.Finally,experimentaland simula-

tionresultsare presentedforan actualcomplete leapmaneuver.

Topicsin threedimensionalspace roboticlocomotion axe addressedin Chapter Seven.

These includean abstracttreatmentoforientationinthreedimensions,controllingattitude

in threedimensions,and hardware designissues.

The finalchapter,Chapter Eight,summarizes the results.Conclusionsdrawn from the

researchare given along with suggestionsforfuturework.

Appendix A detailsthe calibrationprocedures,and Appendix B derivesa simplemodel

forthe airbearing.
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Chapter 2

Experimental Hardware

This chapter describes the experimental hazdwaze I and some of the design decisions that

went into its construction. The experimental robot contains many of the subsystems needed

for an operational space robot, and faithfully addresses many of the issues in space robotics.

2.1 Design Philosophy

The maxim "Things don't work by accident " and its corollary "Things don't work" re-

alistically describe experimental research. All too often, the transition from simulation to

experimental verification fails to achieve meaningful results because of poor judgement and

lack of attention to detail. During the design and construction of this robot, the successes

as well as the failures were studied, so that improvements could be incorporated into future

iterations.

One key design decision, made at the beginning of the project, was to make the robot

modular, both physically and functionally. Like the layers of a wedding cake, the robot is

divided into four sections: high pressure layer, actuator layer, analog/power layer, and a

digital layer. Each layer is inclosed in a cylinder with a base radius of 9.5 in. (241.3 ram).

The connections between the layers (either gas hoses or electrical wires) are only made

through the sides of the cylinders, and not through the bases. Adherence to this rule

insured that no layer would interfere with any other layer, and facilitated the inclusion of

new capabilities into the design. For example, a year into the design, a 9 inch diameter

l Most of the mechanical and electrical designs were done by Maxc Ullman and Ross Koningstein, a_ad

the author gratefully _cknowledges their contributions.

9
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Figure 2.1: Experimental Free-Flying Space Robot

The base and arms are capable of planar motion. The robot is only

attached to the environment through a thin fiber-optic cable.

L

momentum wheel was added to the actuator layer without major modification to the rest

of the robot.

Another important decision was the use of "off-the-shelf" parts which, when possible,

adhered to publlcally recognized standards. This rule applied to all parts except machined

parts and analog electronics, which were designed and built in-house. The reason for this

rule is simple: if a part conforms to a public standard, then future parts with enhanced

capabilities could be interchanged with the existing one. Also, a public standard usually

implies that more than one company is producing the particular item. Thus, the issue of

sole source procurement was avoided.
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Granite Table
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Figure 2.2: Robot Schematic

The robot is divided into functional layers: high pressure layer, actua-

tor layer, analog/power layer, and digital electronics layer. The pressure

vessels provide compressed air to the robot for floatation, pneumatic ac-

tuation, and thrusting. The upper had[ of the robot contains batteries,

ana/og electronics and the digital computer. Each link is driven by a

limited-angle torque motor.

2.2 Mechanical Design

Air Bearing and Support System The robot floats on a air cushion upon a 6 ft ×

12 ft (1.83 m × 3.66 m) laboratory grade granite table. The surface of the table has been

ground fiat to an accuracy of 0.001 in. (25 #m) to provide a level and smooth surface for the

maintenance of the air bearing. The air cushion, approximately 50 #m (0.002 in.) thick,

requires an air flow of 0.08-0.1 ma/hr (3.0-3.4 $CFH). The 10 ton table is kinematically
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supported on threelevelingwedges. Barring seismicdisturbances2,the tablecan be level

to +42 prad. Affixedtothe sidesofthe granitetableisa bar,consistingofverticalcolumns

supporting a 1.5in. (38.1ram) diameter horizontaltube. The bar, shown in Figure 2.1,

islocated6.5in. (165.1ram) above the plane of the tableso that the robot can gripand

releasethe bar using pneumatic actuators.

The base plateisconstructedof 1 in. thickhexel honeycomb sheetbonded between

1/8 in. (top) and 1/16 in. (bottom) aluminum. This design insuressmall mass and

inertiain the base platewhileprovidingstructuralrigidity.The bottom platewas lapped

flatto 25.4 #m. The air supporting the bearing comes primarilyfrom a centerhole,

with six additionalholeslocated208.2 mm from the center.The six secondary holes are

constrictedwith smalltubes,and act toprovideadditionalstabilityand preventgrounding

to the bearing when the centerof mass of the entirerobot isnot locateddirectlyover the

geometric centerof the airbearing.Rehsteiner[25]has done an extensivetheoreticaland

experimentalstudy ofairbearings.He has shown thatoff-centerforcestend to ground the

vehicleor resultin acceleratingthe robot in the directionof maximum flow(thehigh end

of the bearing).To minimize theseunwanted effects,the robot'smass centerwas located

near the base geometric center. Similarto Alexander's[1]base platedesign,a shallow

101.6mmx 0.762 mm plenum was machined under the centerholeto provide an initial

surfacearea when initiatingthe gas flow.

Ideally,one would likea drag-freezero-gairenvironment in the plane of the table.

Rehsteiner[25]providessome formulasto calculateviscousdrag and gas flow.For a round

fiat-bottomedbase with outer radiusro,plenum radiusr_ and centerof mass locatedat

the geometricalcenter,the drag forceD is:

D = --_(ro2-r_)A- B"

-_(r_ - r_) = 0.0612 [N-s/m ] (2.1)

where p isthe coe_cient of viscosityof the gas (air),h isthe thicknessof the airbearing

(50.8#m nominal) and Avs" isthe velocityofthe centerofthe baseplatewith respectto the

inertialframe. With a mass of 75 kg, thiscorrespondsto a time constantof approximately

2During the Loma Prieta earthquake measuring 7.1 on the Richter scale, the 10 ton graphite table was

shaken off its primary balance and onto a secondary support structure. The table also managed to embed

itself about three inches into a wall. Fortunately, no damage was done to the table or the robot.
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20 minutes. The flowrateQ isgiven by:

mgh3 (2.2)

Q = -

Equation 2.2 dearly shows that the flowrateneeded to floatthe robot increaseswith the

cube of the gap thicknessand decreaseslinearlywith the area of the base.The derivation

of thisequationisgiven in Appendix B.

Gas and Pressure System Figure 2.3 schematicallyshows the layoutof the pressure

system [4].Air isstoredon-board in threesphericalpressurevessels(maximum working

pressureof3500 psi).The tanks are filledviaa flexiblehosefrom agas cylinder.A primary

regulatorsuppliespressuresup to150 psito the thrusters,whilea second regulatorprovides

pressureof 9 psi to the grippers.Air flowto the bearing iscontrolledthrough a Ametek

Type 7010 flowmeter.

The on-board gas capacityissufficientto floatthe robot forover sixhours,assuming

an initialpressureof 1000 psi(6.98MPa). However, ifthe gas thrustersare used, the gas

system can sustainthe airbearingforonly20 minutes beforerunning out ofcompressed air.

This limitationin the laboratoryexperiment willalsoaffectthe operationalcapabilitiesof

a space robot.For thisreason,itisimportant to study methods which minimize thruster

usage.

2.3 Electrical Design

Unlike fixedbase robots,which derive theirelectricityfrom the power company, mobile

robotsmust storeand conditiontheirown electricalpower. This factseverlyconstrainsthe

usefulnessofany mobile robot by limitingtime ofoperationand amount ofpeak actuator

authority. The current design for the free-flyingrobot allowsfor about 20 minutes of

operationbeforedrainingthe batteries.On board the robot are two batterypacks,each

containingtwo NiCd rechargeablebatteriesto give raw power at 4- 12 V. The batteries

are rated at 7 A-h, and can provide 15 A peak current.The raw power isconditionedby

onboard DC-DC power converters,supplyingregulatedvoltagesof +5 V @ 10 A, 4-12V

2.5 A, and 4-15V @ 2.0 A. When the robot isnot in use,and externalpower supply (15 V

@ 15 A) rechargesthe batteriesand supplieselectricalpower to the robot. The external

power cableisremoved beforeoperationand experimentation.Of coursethe externalpower
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Figure 2.3: Gas Subsystem Schematic

Schematic d/agram of satellite robot onboard gas subsystem. High pres-

sure air is stored in three pressure vessels. The pressure is regulated to

100 psi for use by gas thrusters. A second regulator reduces the pres-

sure to 10 psi to pneumatically actuate the grippers and supply air for
floatation.

cable could be used in placeof the batteries,but thislimitsthe range ofmobilityand the

achievableaccuracy. Also, when multiplerobotscooperate together,the issuesof tether

foulingwilllimittheirusefulness.

Table 2.1 describesthe differenta_alog caxdsused forswitchingpower, filteringsensor

signMs,and drivingmotors.
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Number Component Comments
I Power ControlUnit

2 BatteryChargingBoards

2 SafetyBoard
3 Motor Driver Boards
1 RVDT Board

1 INS SensorBoard

Main power switchand fuses

Charge batterieswhen connectedtoexternalpower

Drivessolenoidsand shutsoffraw power tobus on error
Each boardsdrives2 DC motors

4 rateand positionchannelsperboard
Filtersforaccelerometersand ratesensor

v

Table 2.1:Analog Cards

2.4 Sensors

Joint-Angle Sensors Each arm joint is instrumented with a Rotary Variable-Differential

Transformer (RVDT) to provide angle measurements. After calibration and filtering, the

angles are estimated to an accuracy of + 2 mrad. The RVDT angle signal is low-pass

filtered at 353 Hr. No anti-aliasing filter was employed because the high frequency content

of the signal was not sufficient to justify the added phase delay.

An estimate of the angular rate is obtained by passing the position signal through a

--ks

pseudo-differentiation filter. The transfer function of the filter can be realized as (as+l)(bs+l),

where 1/21ra -- 12 Hz , 1/2_b - 330 Hz and k - 0.968. At low angular rates (s <_ 0.5 Hz),

the filter approximates a pure differentiator. One reason an RVDT sensor was used instead

of an encoder was the ease in obtaining reasonable rate information at low frequencies.

During normal operation, the maximum angular rate of any joint does not exceed 0.1 Hr.

The rate information is accurate to _- 2 mrad/s.

Angular Rate Sensor Mounted on the base platein an isolationshock mount isthe

Watson Angular Rate Sensor.This sensormeasures the angularvelocityof the base plate

with respectto the inertialframe (laboratoryframe). The sensorconsistsof two pairsof

piezoelectricbender dements, mounted end to end, but rotated 90 degrees as shown in

Figure 2.4.The base element isdrivenat 360 Hz causingitto vibrate.Ifthe instrument

isrotated,Coriolisforcescause momentum to be transferredintothe perpendicularplane,

resultingin a bending ofthe sense-element.

After calibration,the instrument can detectangular ratesof 4-I mrad/s, with average

biasuncertaintyof -4-60prad/s over a 5 minute time interval.The maximum angular rate

the sensorcan detectis100 deg/s (1.74rad/s).Typical peak angular ratesare 0.6 rad/s

forthe base body. Table 2.2givessome important specificationsfor the instrument.
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__ Drive Element

No. 2

I

_ Drive Element

No. 1

Sense Element

No. 2 I

_ Sense Axis

Sense Element

No. 1

Figure 2.4: Angular Rate Sensor

Schematic diagram of the angular rate sensor as a "Tuning Fork" trans-
ducer.

Unfortunately, angular rates are not the only source of sense element bendings. External

vibrations and accelerations can deflect the sense element, as can acoustical energy which

is radiated from the drive element and reflected by its environment to the sense element.

In ad_tion, temperature variations causes drift in the DC component of the signal. By

using a "tuning fork" configuration, many of these problems are reduced. By driving

the two pairs of bending elements at the same frequency but 180 degrees out of phase,

a nodal plane created midway between the drive elements cancels radiated energy from

the drive elements. Also, external vibration or acceleration cause the sense elements to

vibrate in phase, while angular rates cause the sense elements to vibrate out of phase.

Thus, differencing the sense element signals achieves common-mode rejection of external

vibration and accelerations.

The only other major cause of error is acoustical energy which is radiated from the

drive elements, reflected by the environment, and interpreted by the instrument as a rate

signal. An electrical analogy is energy being reflected from the end of a transmission line

because the impedance at the end is not matched with the terminating resistors. This

problem was solved by wrapping the instrument in 1]8 inch Sorbothane, a visco-elastic

polymer. The Sorbothane provides acoustical damping and shock absorption h,, absorbing
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Model:

Power supply:

Output:

Sensitivity:

Output current:

System frequency:
Scale factor error:

Linearity:

Frequency response:

Output noise:
Life:

Shock:

Weight:

ARS-C131-1A

4-15 VDC +5% 20 mA maximum

4- 10 VDC at full scale angular rate

4- 100 deg/s full scale
4- 10 mA maximum

360 Hz nominal

2%
< 0.1% full scale

DC to 30 Hz

5 mV RMS maximum

50,000 hours MTBF minimum

200 g

0.110 kg

Table 2.2: Watson Angular Rate Sensor Specifications

or transmitting most of the energy.

The angular rate sensor, also known as a "tuning fork gyro', has the advantage over

conventional rate gyroscopes of longer life (50,000 hours MTBF) and reduced cost.

Accelerometers The robot isequiped with two Systron Donner 4310 accelerometers.

Table 2.3liststhemajor attributesoftheinstrument.Historically,accelerometershave not

been used in roboticsbecause oflow signal-to-noiseratioin the presenceofgravity.Itwas

hoped that the _irbearingwould afforda stableenvironment so thataccelerationsdown to

the 100 pg levelcould be measured to givereasonablevelocityand positionmeasurements.

Unfortunately,driftin the instrument and environmental disturbancesdid not allow for

centimeteraccuracyinpositionovera one minute time scale.However, a scheme thatshows

good promise in the futureisto use a Kalman filterwith positionmeasurements from off-

board visioncombined with accelerometerdata to givesmooth estimatesof positionand

velocity.

LED Sensor/detector The LED's are used to detect objects which come into close

proximity to the grippers. They are driven by very short pulses of current (100 mA) at

a nominal period of 1.4 kHz. During one duty cycle, the LED is on for 12 ps and off

for 700 ps. The detector, a phototransistor, senses the short pulse and extends them in

order to provide a constant DC level. Pulse extension is accomplished by a retriggerable

monostable multivibrator (74LS122), with a period of 2 ms. Therefore, any break in the
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Model:

Power supply:

Output:

Sensitivity:

Output current:

Zero Output (Null):

Linearity:

Natural frequency:

Output noise:

Resolution

Shock:

Weight:

Systron Donner 4310

4-15 VDC 4-10% at 10 mA maximum

4-7.5 VDC at full range

4-1g fullscale

4-3 mA maximum

< 0.05% fullrange

< 0.05% full scale

50 - 250 Hz

< 7.5mV RMS

< 0.001% fullrange

100g for 11 ms

128 grams

Table 2.3: Linear Servo Accelerometer

light pulses of longer than 2 ms will cause the output of the detector to drop from 5 volts

to 0 volts.

Force Sensors The robotisequiped with threeforcesensorsembedded intoeach gripper.

Two sensorsaxe locatedin the palm, and the other sensorislocatedin the pneumatically

actuated finger.When calibrated,the sensorcan detectforcesbetween 0 N and 9 N to an

accuracy of I% of fullscale.

Recent advances in micro machining and surfacemounted devices(SMD) technology

has given riseto soUd-stateforcesensors,pressuresensors,and accelerometers.For exam-

ple,a small forcesensor(3 mm x 3 ram) can be produced by micro machining a thinshelf

in the siliconand growing a halfbridgecircuiton it. Changes in appliedforceproduce

linearchanges in resistance.The advantage thismethod has over straingages isthat the

forcesensorislocatedatthe pointofinterest,and not some distanceaway. Straingagesaxe

usuallyattached to a beam element,and inferthe forceat the tipby measuring the strain

or bending in the beam element.To achievegreatersensitivity,a longerbeam isnecessary

which introduceshigherorder dynamics. Itisalsomore difficultto measure appliedforces

on a smooth surfaceusing an array of straingages.These problems can be overcome by

using an arrayof solid-stateforcesensors.
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2.5 Actuators

There are two basictypes ofactuatorson the robot:electricDC motors and pneumatically

actuated solenoids.The fivemotors supply torqueto the fourjointsinthe arms and to the

momentum wheel. Eight thrusters,mounted in4 orthogonalpairson a flatlexan thruster

plate can alsosupply additionalmomentum to the vehicle.During normal operation(no

thrusting),the airsupply can floatthe robot forabout sixhours ifthe tanks are initially

pressurizedto 1000 psi(6.98MPa). Ifthe thrustersareused,however,the vehiclecan only

floatfor 15 to 20 minutes beforegrounding out.

ElbowRVDT

ElbowMotor

Yoke

Shoulder Motor

Shoulder RVDT

ElbowPulleyDriveSystem

f Gripper

Figure 2.5: Arm Schematic

Each link is driven by a limited-angle torque motor; the arm is equipped

with joint angle and optical endpoint sensors.

Motors Each linkisdriven by a limited-angleDC torque motor. These motors were

chosen for their nearlyfrictionlessoperations. Each arm has two motors, one for the

shoulder and one forthe elbow. Figure2.5shows a schematicofthe arms and motors. The

shoulderjointisdirectdrive,whilethe the elbow jointisdriventhrough a cableand pulley

system. The pulleyisgeared 4:5 to extend the range of the elbow jointat the expense of

reduced torque capability.This configurationallowsthe elbow motors to be mounted on

v
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the shoulder, and drastically reduces the effective inertia of the upper-arm link. The elbow

motor is carried by a yoke attached to the shoulder-motor shaft to allow it to operate in

its full range independently of the shoulder position.

The robot is also equipped with a DC brush servo motor to drive the momentum wheel.

This motor was chosen so as to supply enough torque to rotate the robot 180 deg in I0 s

while the robot is in a nominal position 3. Due to onboard power constraints, only three

of the five motors can be run at maximum torque at the same time.

Base Parameters

Diameter 0.4826 m

Mass 67.96 kg

Inertia 3.29 kg-m _
Shoulder Link Parameters

Length 0.3048 m

Mass 1.9231 kg

Inertia 0.0238 kg-m 2
Hub to Link Center of Mass a 59.4 mm

Motor Peak Torque 0.91 N-m

Elbow Link Parameters

Length 0.3015 m

Mass 0.3382 kg

Inertia 0.00416 kg-m 2
Hub to Center of Mass 0.1058 m

Motor Peak Torque 0.59 N-m

Momentum Wheel Parameters

Mass 3.2943 kg

Inertia 0.1025 kg-m 2

Motor Peak Torque 0.54 N-m

aThe center of mass is offset by. 3.7 mm from the link
centerline.

Table 2.4: Arm and Base Specifications Table

Grippers Each arm is equipped with a special gripper to allow the robot to detect and

grasp a bar surrounding the granite table. The reason for the left and right handedness 4

in the design, apart from preserving symmetry, was to allow a wider range of grips. Each

hand has one pneumatically actuated finger and solld-state force sensors located in the

SThe inertia of the robot taken about the system mass center is a function of configuration.

4 Each gripper is the mirror image of the other.
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palm and finger. There is also a photo emitter/detector pair to sense when an object is

within its grasp. The center of mass of each hand is located at the wrist, which is free

to pivot along an axis perpendicular to the table. The palm and finger are padded with

Sorbothane to supply compliance and prevent bouncing. Although there is no motor in

the wrist, the air tubes and wires running through the hand supply a small restoring force

to bring the hands to a nominal position. This force was considered small and was not

modelled. Figure 2.6 shows a picture of the gripper. ORIGINAL PAGE

BLACK AIN.D WHITE PHOTOGRAPH

Figure 2.6: Gripper

Close up picture of the gripper. Each hand is instrumented with three

forces sensors and an optical sensor to sense the bar. The finger is pneu-

matically actuated.

_J

2.6 Computer System

The computer system incorporates the UNIX development environment with high-performance

real-time hardware located onboard the robot. A heterogeneous network of Sun Worksta-

tions, running the UNIX operating system, allows a window-based environment for pro-

gramming, debugging, analysis and simulation. The real-time computer communicates
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k1

Number Component Manufacturer& Model Comments

1 Processor

I Analog Input

1 Analog Output

I DigitalI/O
1 Ethernet Transceiver

Motorola MVME-147

Xycom XVME-590/3
Acromag AVME-9210
Xycom XVME-290
VersitronLF_,-220

68030 / 68882 with 4M RAM
16 Channel Analog Input
8 Channel Analog Output
32 Channel Digital I/O with Timer
Fiber Optic Ethernet Transceiver

Table 2.5: Real-Time Computer Components

%i

with the network via a fiber-optic ethernet cable (see Figure 2.2), to allow programs to

be downloaded and experimental data uploaded to the server's hard disk. The computer

VME Bus ]
A

CPU

68030

A/D D/A
Distal

yO

i E 0r.ot 1

Figure 2.7: Hardware Architecture

The computer system combines the Sun UNIX development environment

with a high-performance real-time computer.

r,j

layout is shown schematically in Figure 2.7. All Sun Workstations in the lab are connected

via ethernet and gateways to a local file server. The real-time computer is also connected

to the network and looks to the other machines as another diskless workstation. The main

CPU card, a Motorola MVME 147 board consists of 4M RAM, a 68030/68882 processor,

4 serial ports and an ethernet port. All the analog electronics interface to the digital elec-

tronics through a digital transition module, which connects sensor signals to the digital

board's P2 connectors. Table 2.5 summarizes the real-time system hardware.
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Chapter 3

Derivations of the Equations of

Motion for LEAP Vehicle

3.1 Introduction

This chapter describes a general method for deriving the equations of motion for a free-

flying robot. Although alternate formulations have been done for one-arm [1] and two-

arm [5] robots, this derivation will focus upon extracting momentum equations. These

equations, presented at the end of this chapter as Equation 3.29, will be used in Chapter 5

in conjunction with computed-torque control.

Figure 3.1 shows a schematic of a generic two-arm robot with a momentum wheel.

In the free-flying configuration, the robot has 8 DOF. Of course other configurations are

possible, namely, whenever one or two arms grasp another structure. When both arms

grab a bar, the system is said to be in a closed-chain configuration. In the closed-chain

configuration, the number of degrees of freedom drop to 4, and the equations of motion

can be made to look very different. By formulating the equations of motion in terms of

momentum as in Equation 3.29, only one set of equations is needed, because momentum

is a dynamic quantity that is independent of the geometry. The kinematic constraint will

be accounted for through the nonholonomic constraint equations of section 3.3.1

23



V

V

Chapter 3. Equations of Motion 24

3.2 Definitions of the Generalized Speeds

Kane's method [15] will be used for deriving the equations of motion for the LEAP system.

Both the free-flying and closed-kinematic chain configuration (arms grabbing the bar) will

be derived. This process involves choosing a set of generalized coordinates and general-

ized speeds, finding the partial velocities, and then deriving the dynamical equations of

motion. Having done this, the closed-kinematic-chain derivation is a special case of the

open-chain derivation. As a cross-check to the derivation, a computer generated version of

the equations of motion were also performed using the software program SD/EXACT [31].

This program produces as its output a FORTRAN subroutine containing the equations

of motion. The results of the SD/EXACT program were simplified using MACSYMA [2],

a symbolic manipulation package. At the present time, SD/EXACT does not offer the

flexibility in choosing generalized velocities and coordinates, which can give equivalent but

simpler equations of motion. For this reason, most of the analysis was performed by hand.

Although not unique, the choice of generalized coordinates is predicated on ease of

computation. The generalized coordinates represent quantities that are easily measured,

as shown in Figure 3.1. The only issue that remains after choosing a set of generalized

coordinates q_ is to determine the zero or reference configuration. Three criteria were used

to pick the unique reference configuration.

1. The "x" direction of the base should point towards the front of the vehicle to conform

with conventional navigation nomenclature. In deriving equations of motions for an

airplane, the "x" direction points in the forward direction.

2. The "x" direction of each link should point along the length of the arm. In beam

theory, the body coordinates are defined such that the "x" direction is along the

beam and the "y" direction is along the direction of deflection.

3. In the reference configuration when all the q_'s are zero, all the body coordinates

should line up. For example, bl and fl would be parallel.

Note that all subscripts begin at zero instead of one (i.e. the first element of the vector

u is uo). This corresponds to the definition of vector elements in the C language, where

the first element of the array x is x[0]. Also, the terms sin(qi) and cos(qi) are abbreviated

as s_ and c;.

The choice of generalized speeds is also not unique: however, they must be affine in the

derivatives of the generalized coordinates. In the Lagrangian formulation of the equations
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Figure 3.1: Dynamic Model of the Mobile Space Robot

Model description is in the text.
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of motion, the identity map relates the derivatives of the generalized coordinates to the

generalized speeds. This apparent simplification can lead to complicated expressions in the

dynamical equations of motion. A choice of generalized speeds which has been found to

give simple expressions for the equations-of-motion are:

E_

v_

v

A AI_B.Uo = • bl = (10cos(q2) + (11sin(q2)

A A.oB,U 1 -_ "b2 - (11 cos(q2) - (10 sin(q2)

/x Aw Bu2 = "b3 = (12

A AW Cu3 = -/_ = (1_+ (13

& AwDU4 -- • b3 = (12 + (13 + (14

A AW Eu5 = • b3 = (1: + (15

& AwFu6 = • b3 = 42 + (Ts+ 46

& AwGU7 -- "b3=(12+q7

(3.1)

where the velocity of point B" in reference frame A is noted by AoB*. Using these definitions

for the generalized speeds, the velocities of the points of interest become:

Uo bl + ul b2

Uo bl + ul b2 Jr u2 LOl r2

Uo bl + Ul b2 + u2 Lol r2 Jr u3 Llls c2 - u3 Llls Cl

Uo bl + ul b2 + u2 LOl r2 + u3 Lll c2

Uo bl Jr Ul b2 Jr u2 LOl 1"2 Jr u3 Lll c2 + u4 L12= d2 - u4 L12_ dl

uo bl + ul b2 + u2 L01 r2 + u3 Lll c2 + u4 L12 d2

U0 bl + Ul b2 Jr u2 L02 r4

uo bl + ul b2 + u2 L02 r4 + u5 L21. e2 - us L21_ el

uo bl + ul b2 + u2 Lo2 r4 + us L21 e2

Uo bl Jr Ul b2 Jr u2 L02 r4 Jr u5 L21 e2 Jr u6 L22, f2 - u6 L22_ fl

uo bl Jr Ul b2 Jr u2 Lo2r4 Jr us L21 e2 Jr u6 L22 f2

uo bl Jr Ul b2 Jr u2 Lo3 r6

(3.2)

(3.3)

A,vB* _

AvP3 .-

A,vC* _.

A vP4 =

AvD* =

AvP5 =

A vPe =

A,vE° _.

Av_ =

A_F* =

AvPs =

A_ G° __
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3.2.1 Accelerations

By differentiating the above velocities with respect to time in the inertial frame A, the

following eight a£celerations of interest axe found:

AaB" = uobl "}'_l b2- ulU2bl "b ltou2b2

AaC* = Uo bl + _I b2 - ulu2 bl + _ou2 b2 _- _2L01 r2 + _3Ll1= c2 -

_3L11_ c I - u22L01 I"1 - u32L11z cl - u32LI1_ c2

AaD* "- _/0 bl "_ _1 b2 - UlU2 bl Jr I/0_/2 b2 "_-_2_017'2 _- _3Lll c2 _-

u4L12, d2 - _4L12y dl - 1/22L01 T1 - u32L11 Cl - u42LI2= dl - u42L12_ d2

AaS" -- Uo bl + ul b2 - ulu2 bl + SoU2 b2 + _2L02 r4 + _sL21s e2 -

ttsL21_ el - u22L02 r3 - us2L21= el - us2L21_ e2

AaF* -- tto bl + _1 b2 - ulu_ bl + uoU2 b2 + _2L02 r4 + _sL21 e2 +

ueL22= f2 - _sL22_ fl - u22L02 r3 - u52L21 el - u62L22z fl - lt62L22y f2

A aG* = uo bl + _tl b2 - Ul U2 bl + uou2 b2 + _2Lo3 r6 - u22 Lo3 rs

AaPs : _0 bl Jr fZl b2 - UlU2 bl + UoU2 b2 Jr _2Lol r2 q- u3Lll c2 -]-

'1/,4L12 d2 - u22Lol rl - u32Lll Cl - u42L12 d:

AaPS = Uo bl + izl b2 - 'UlU2 bl -I- 'tto'tt2 b2 "1- 'u2L02 r4 "t- 'b,sL21 e2 -]-

_6L22 f2 - _22L02 r3 - Us 2L21 el - u62L22 fl

(3.4)

_r
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3.2.2 Partial Velocities and Partial Angular Velocities

The next step in the derivation of the equations of motion is to calculate the partial

velocities nv_, and partial angular velocities A_B where

a_P, A nay P, (3.5)

AWBr __ i_A_B (3.6)
OUr

The tables of the partial velocities of the points of interest and the partial angular velocities

of the bodies of interest for the robot are given on the following page.

3.3 Equations of Motion

The equations of motion can now be derived using Kane's dynamical equations [15] which

state that:

F_ + F_ =0 r= l...n

where n is the number of generalized coordinates or degrees of freedom, and

IJ

A_P_ ai-- Z --mi v r •
i--.O

i_O

u is the total number of particles and R_ is the resultant of all forces acting on particle/_.

By combining terms, one can put the equations of motion into the form

M/t-c = Tr+f_,,_t (3.7)

il - Y-lu

where M is a symmetric positive definite mass matrix, c is an 8 x 1 vector of Coriolis

and centrifugal terms, _" is a 5 × 1 vector of applied motor torques and f_t_ is an

8 × 1 vector of all other external unmodelled active forces acting on the system. We will

assume that fe_t_l = 0 in the following derivation. The unimodular matrix y-1 defines

the kinematic relationship between q and u.
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AVB* Av_s ArC" AvP_

bl bl bl bl

b2 b2 b2 b2

0 Lol r_ Lol r_ Lm r2

0 0 Lll. c2 - Ll1_ cl Lll c2
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

AvD" AVP5 AvP6 AvE"

bl bl bl

b2 b2 b2

L01 r2 L01 r2 L02 r4

Lll c2 Lll c_ 0

L12_ d2 - L12_ dl L12 ds 0
0 0 0

0 0 0

0 0 0

bl

b2

Los "4
0

0

LSl_ e2 - L21_ el

0

0

Ave_, AvE* Av_, Av G"

bl bl bl bl

b2 bs b2 b2

Lo2 r4 Los r4 Lo2 r4 Lo3 re
0 0 0 0

0 0 0 0

L_I e2 L21 es Lsl e2 0

0 Ls2_ fs - L22v fl L2s fs 0
0 0 0 0

Table 3.1: The partial velocities

0 0 0 0 0 0

0 0 0 0 0 0

b3 0 0 0 0 0

0 b3 0 0 0 0

0 0 b3 0 0 0

o o o b3 o o
0 0 0 0 bs 0

o o o o o b3
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Table 3.2: The partial angular velocities
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M __

gl 0 Z2 Z3S3 "4- Z5834 + Z7"_5 +

Z4C 3 Z6C34 Z8C5

0 Zl Zll

Z2 Zll Z12

z9sss +

Z10C56

Z483 -- Z6534-- Z885-- Z10856 -

Z3C 3 Z5C34 Z7C5 Z9C56

Z1383+ Z15834+ Z1785+ Z19856+

Z14C3 Z16C34 Z18C5 Z20C56

Z383+ Z483 -- Z1383+ 221 Z2254 +

Z4C3 Z3C3 Z14C3 Z23C4

zss34+ zes34- zlss_+ z22s4+

z6c34 z5c34 z16c34 z23c4

Z24 0

0 0 z2sZ785 + Z885 -- Z1785+

z8c5 z7c5 z18c5

zgss6+ zloss6- zlgs56+ 0 0 z26se+

Z10C56 Z9C56 Z20C56 Z27C6

0 0 0 0 0 0

z26s6+

Z27C6

Z28

0

0

0

(3.8)

0

0

0

Z29

v

v

Where the z_ are constants and have the following definitions:

zl = mo + ml + m2 + m3 + m4 + ms

A
Z2 = --(m I + m2)Lol , - (m3 + m4)Lo2y - msLo3u

£x
Z3 -" -rnlLlls - ?Tt2Lll

A
Z4 -" -m1Llly

z_
Z5 = -_Tt2L12s

A
Z6 "- -m2L12y
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v

v

Z7 -- -m3L21= - m4L21

z8 -" -rtt3L21_

z9 = -m4L22ffi

ZlO "- -rrt4L22_

Zll = (ITt 1 + 17_2)Lols + (ITt3 + 17t4)L02. + 17_5.L03,

Z12 -" -TO+ (Y7_I + w_2)Lol 2 + (_t3 + m4)L022 + rnsLo32

z13 = -mlLo1.Lll_ + rnlLox_Lll. + m2Lol_Lll

z14 = miLo1_Li1_ + miL01,L11y + m2Lol.L11

Z15 = -rn2Lol.L12_ + m2LolyL12,

ix
zls = m2Lol.L12_ + m2Lol_L12y

/.
zl"t = -ra3Lo2.L21_ + m3Lo2_L21,, + m4Lo2_L21

12,
zls = rn3Lo2.L21_ + rn3Lo2yL21, + rn4Lo2_L21

g19 = -rn4Lo2=L22y -}- rn4Lo2_L22.

z2o = rn4Lo2,L22_ + m4Lo2_L22_

Z21 = /1 +ml(Lllz 2+Lll_ 2)+m2Lll 2

z22 = -m2LllL12y

Z23 -" rn2LllL12z

&
z24 -- 12 + m2(L12. 2 + L12_ 2)

A
z25 = I3 + m3(/;21, 2 + L21, _) + m4/;21 _

Z_
z26 = -rr_4L21L22_

&
Z27 -" _r_4-L21L22z

Z2s = 14 + m4( L2_. _ + L_2, _)

A
Z29 -" 15

The choice of generalized speeds determines the complexity of the mass matrix. With

the present choice, the mass matrix can be formulated with 28 multiplies and 14 additions.

These operations can be performed in parallel, since there this no dependency between the

elements of the mass matrix. Also note that the quantities qt, q2, and q3 do not appear in

the mass matrix or the nonlinear Coriolis and centrifugal terms.

The nonlinear Coriolis and centrifugal terms are found in the vector c for Equation 3.7,

and are functions of qi, ui and zi.



_f

Chapter 3. Equations of Motion 32

T

=C0)

=(1)

=(2)

=(3)

c(4)

=(5)

=(T)

= UlU2Zl "_" U22Zll Jr" U32(Z4S3 -- Z3C3) "_" U42(Z6S34 -- Z5C34) "_"

us2(zss5 - z7c5) + _2(zlos56 - zgcss)

--" --U0?t2Z 1 -- 1/22Z2 -- t/32(Z383 "_- Z4C3) -- B42(Z5834 "4- Z6C34 ) --

U52(ZTS5 "[- Z8C5) -- 1/,62(ZgS56 + Z10C56)

"- --UoU2Zll + "1_2Z2 JC U32(Z1483 -- Z13C3) -}" U42(ZlsS34 -- Z15C34) "4"

,_s2(zls_5- z17cs)+ ,,J(z20_s6- z19css)

-- --ItOlt2(Z483 -- Z3C3) + UlIt2(Z383 + Z4C3) -- U22(Z1483 -- Z13C3) "4-

---- --UOU2(Z6834 -- Z5C34 ) "_- Ul?/2(Z5834 3L Z6C34 ) -- It22(ZI6S34 -- Z15C34 ) --

,_2(_23_- _2_c_)

= --I/,Ott2(Z885 -- Z7C5) "_" Ultt2(Z7S5 "Jr Z8C5) -- _,22(ZlsS5 -- Z17C5) +

us2(z27ss - z2scs)

"- --UOU2(ZloS56 -- Z9C56) 4" UlU2(ZgSs6 Jr ZlOCS6) -- I$22(Z20S56 -- Z19C56) --

u52(z2Tss- z2sce)

= 0

The vector Tv in Equation 3.7 is given by

_J

TT "-

0 0 0 0 0

0 0 0 0 0

-1 0 -1 0 -1

1 -1 0 0 0

0 1 0 0 0

0 0 1 -1 0

0 0 0 1 0

0 0 0 0 1

rl

(3.9)

Where th_ ri are torques from the five motors. Note that the sum of each element in a

column of T is zero. The physical implications of this fact is that no motor can cause a

net torque about the system's mass center. The first two rows are zero, signifying that the
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actuators have no net effect on the total linear momentum. The y-1 matrix in Equation 3.7

isunimodul_ and isgiven by:

cos(q2)

sin(q2)

0

0
y-1 =

0

0

0

0

-sin(q2) 0 00 000

cos(_) 0 O0 000

0 1 O0 000

0 -1 10 000

0 0-11 000

0 -1 O0 100

0 0 00-110

0 -1 O0 001

3.3.1 Nonholonomic Constraint Equations

When both arms ofthe robot aregraspingthe bar,the number of degreesoffreedom ofthe

system drop from eighttofour.At the tipofeach arm, theretwo nonholonomic or velocity

constraintswhich much be satisfiedto insurethe closedkinematic-chainconfiguration.The

fourconstraintequationsare:

AvP5 -b, - 0 (3.10)

A'vPs.b2 -- 0 (3.11)

AvP8 "bl = 0 (3.12)

AvPs'b2 -" 0 (3.13)

Substituting Equation 3.2 and Equation 3.3 yields the following set of nonholonomic con-

stralnt equations.

F _3

_4

i
u 5

L tt 6 .

us = Asrur

--C, Os(q3-I-q_ ) sln(q3+q4 ) -LoI= sin(qs+q4)+Lol_ co_J(q3+q4)

L,2sln(q_)-_I_ *in{e,) LI_sin(q,)

co_(q3) _,q3)
L,2 _n(q,) L_2 _n(q4)

-- cos(q5 +q6) sin(qs +q6)
/-,2_sin(q6) -/_1 lin(q6)

Lo,_ _in(q3)-Lo, x cos(q3)
L_2 _in(q,)

-Lo?= sin(qs+q6)+Lo_ cos(qs+q6)
L2_ _i-(q6)

cos(qs) sin(_s) Lo2= sin( qs )- Lo=_l cos( q_ )

L_ si.(q_) /_ _n(q6) L_ _i_(_e)

_0

it2

(3.14)
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Differentiating the velocities in Equation 3.2 and Equation 3.3 with respect to time in

reference frame A and dotting the acceleration vectors with orthogonal unit vectors bl and

b2 gives the following set of equations which expresses/L, in terms of/tr, u and q.

= + b, (3.15)

U3

_5

U6

-- co6((/3"t'q4) -- mn(qs't-q4)
Lll ,ia(qD LI: _(q4)

-L01= gin(q3+qt)+Lol_/ cos(q3_-qt)

co,{_3) ,i,(q3) _:. _(q_)-Lo_: coo(q3)
L12 sin(q4) L12 sin(q4) L12 sin(q4)

_ cos(q5%q6) _ sin(qs_-qe)

L21 *re(q6) L2_ _n(q6)
-L02= sin(qs+q6)+Lo2_ cm(qs+q6)

L21 sia(q6)

co_(qs) ,m(qs) Lo2. _(_5)-L02_ _o,(qs)
L22 sin(qs) L22 sin(qe) L22 sin(qe)

_2

+

-_0 u2 sin(q3 +q4 )+ul u2 cos(qz +q_ )+u_ 2 [Lo_ _ cos(q3 +qt )+Lo_ _ sin(q3 +qt )]+u32 L_ _ cos(q_ ) +u_ : L12

uou2 sin(q3)-ul u2 cos(q3)-u22[LOl_ cos(q3)+Loly sin(q3)]-u32Lll-u42Ll2 cos(q4)

L_2 lin(qt)

-uo u$ ain(q$ +q_)-kul u2 cos( q5 +qs ) +u2 2 [L02_ co$( q5 +qs )-I-L02ll sJn( q5 +qs )]+u_ 2 L21 cos( q$ ) + u_ 2L22

uou2sin(q_)-ul u2coe(q5)-u22 [Lo_ co_(q5)÷Lo_ °in(q_)]-u_2L21-us 2L2_cos(qs)
L_ ,in(¢_)

With this constraint equation, one can derive the reduced set of the equations of motion

by partitioning Equation 3.7 and adjoining the constraint equation as follows

M,r M,°

MT_ Mo°

cr

C_

+
T°

-r (3.16)

KTL_

[M,r "t- M,°A,, ÷ (Mr,A_) T -}- A_M°,A,r] i_, =

This can be written in a more succinct form:

• - t =

(3.17)

(3.1s)
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3.4 Force Constraint

= .

There is an alternate but equivalent formulation of the equations of motions which does

not involve solving for the nonholonomic constraints, but rather imposes a force boundary

condition at the tips to insure that the velocity at the tips of the arms is zero when the

arms are grasping the bar. If Equation 3.7 is modified to include forces at the tip we get

Where ft@

bar on the arms at the tips, points Ps and Ps.

M u - c = TI" + Tf:_p + fext_'nat (3.19)

is a four vector representing the normal and tangential forces exerted by the

- cos(q3+ q4) sin(q3+ q4) - cos(qs+ qs) sin(qs+ qs)

- sin(q3+ q4) - cos(q3+ q4) - sin(qs+ qs) - cos(qs+ qs)

-Lol=s34 Jr Loluc34 -L01=c34 - Lol_s34 -Lo2.Ss6 Jr L02_c56 -L02=c56 - Lo2_S56

-LII sin(q4) -LII cos(q4) 0 0

0 -L12 0 0

0 0 -L21 sin(qs) -L21 COS(q6)

0 0 0 --L22

0 0 0 0

Rewriting Equation 3.14, yields

r
Au = 0 (3.20)

_o

1 0 -Lo_, -Llls3 -L12s34 0 0

0 1 Lolz LllC3 L12c34 0 0

1 0 -L02_ 0 0 -L2185 -L22ss6

0 l Lo2= 0 0 L21cs L22cs6

Ul

U2

_t3

U4

US

=0

_6

Differentiating Equation 3.20 with respect to time in reference frame A yields

Ai_ = b (3.21)
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_/1_t2 Jr u22Lo1= _- u32L11 Cos(q3) "_ u42L12 Co8(q3 "_" q4)

--U0U2 _ u22L01_ _- u32LI1 sin(q3) + _42L12 sin(q3 + q4)
b=

ulu2 + u_2L02, + u52L21 cos(qs) + ue2L22 cos(qs + qe)

-UoU2 + u_2Lo2y + u52L21 sin(qs) + ue2L_2 sin(q5 + qe)

Using Equation 3.19 and Equation 3.21, the resultant forces exerted by the bar on the

arms at points P5 and Ps are

ftip = JAM-IT]-1[ b - AM-Ic - AM-1TT"] (3.22)

Y

3.5 Some Properties of the Center of Mass

In controlling the robot, there are some properties of the center of mass that are of interest.

They are the position, velocity and acceleration of the center of mass. Also, the total

angular momentum about the center of mass will be derived. The following definitions will

be used in calculating the center of mass and momentum for the robot.

Definition 1 (Mass Center) If S is a set of particles PI,..., Pn of masses ml,... , _tn,

respectively, there exists a unique point S* such that

E raii'i = 0

where ri is the position vector from S* to Pi (i = 1,..., n). The point S" is called the mass

center.

Definition 2 (Linear Momentum) If S is a set of particIes P1,..., Pn of masses ml,..., mR,

respectively, moving in a reference frame A with velocities av;'X ,....4 .uP,,, then

L = _ ml av_"

where the vector L is called the total linear momentum.

Definition 3 (Angular Momentum) If S is a set of particles P1,...,Pn of masses

ral,..., rnn, respectively, moving in a reference frame A with velocities .4v ex ,... ,.4 v P",

then the vector .4H s/s', called the angular momentum of S relative to S* in A is defined

as
n

A HS/S" = E miPi X .4v P_

i=1

where Pi is the position vector from the point S* to Pi (i = 1,..., n).
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The above definitions describe properties of a system of point masses, and do not deal

with rigid bodies per se. However, for a system of rigid bodies, these definitions readily

extend by treating each rigid body as behaving like a point mass at its mass center with

a central inertia dyazlic about the mass center. Then definitions can be stated in a more

useful form as:

All bodies

L = m, (3.23/
i--1

All bodiea

AHSlS" = _, I t • o_i+ raipi X iv: (3.24)
i=1

where all points are taken to the mass centers of each of the bodies.

With these definition, the mass center and momentum of the robot can be calculated

as a function of the state, masses, and lengths.

;;_CM ._ qoal + qla2 (3.25)

"_" (Zll -- Z3C3 "_" Z483 -- Z5C34 "_" Z6834 -- Z7C5 _t. Z885 -- Z9C56 -_ ZloSse)/zlbl

-- (Z2 "_" Z333 "Jr Z4C3 _" Z5S34 "_"Z61_34 "_ ZTS5 "_"Z8C5 "_"Zo-q56 "{- ZloC56)/zlb2

1 M(1,i bl - M(O,i b2
qoal + qla2 + zl

The velocity of the center of mass is given by:

AvCM "- (ZlUO -11"Z2U2 -}- (Z3,93 "1- Z4e3)U3 _"

(zss34 + z6cu)u4 + (zTs5 + zscs),_5 + (zg_s6 + ZloCs_)u6)/Zlbl

"b (ZlUl "4- Z111/2 -- (Z3C3 -- Z483)U3 --

(ZsC34 -- Z6,934)_4 -- (Z7C5 -- ZSSS)US -- (Zges6 -- zlosse)us)/zlb2

1 M(O,i)u(i bl+ M(1, i)u(i b2D

-- Zl

The total linear momentum of the system ALc_' is zlv c'_.

The acceleration of the center of mass is given by:

7

(3.26)

(3.27)
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The centralangular momentum, taken about the mass center,isgivenby:

7 7

AHCM = E _ M(i,j)u(j) b3 + zip c'_ × v c_ (3.28)
i--2 j--0

where ApCU is a vector from the center of mass of the base body B to the system center of

mass and is given as ApCU = ze_ _ qoal - qla2.

Finally, the relationship between the derivative of momentum and the generalized ac-

celerations can be shown to be:

[L.,](7. ]_i=o Mojuj - Co

z " c (3.29)• b2 - _j=oMIjuj - 1

•c_ x-_7 x--,7 _,r.._,.H z • b3 L,i=2/_..j=o _'_ ,_ _ -- ci

Once the equations of motions are derived, the kinetic energy is easily calculated as

Energy = luTMu (3.30)Kinetic

Note that allthe quantitiesof interestare given in terms of the mass matrix. From

Equation 3.8,itisapparent thatthe mass matrix can be constructedwith only 14 additions

and 28 multiplications.



Chapter 4

Strategic Control

This chapter describes the high level strategic controller. The strategic controller provides

a means of performing task level commands. It provides an interface to low-level control

laws which control physical states of the system. This chapter introduces the concept of

state diagrams for designing and programming the strategic controller. An advantage of

a strategic controller is that it allows for the rapid switching of control laws during the

execution of a task. This is a very desirable capability for a system undergoing abrupt

kinematic constraints.

4.1 Introduction

The classic digital control paradigm is depicted in Figure 4.1. This controller executes

synchronously and serially, making it easily implementable on digital computers. These

dynamic controllers are the heart of any robot control scheme, and are discussed in detail

in Chapter 5. Unfortunately, dynamic controllers do not provide an easy interface to task

level commands. Being error based, most dynamic controllers accept as inputs a desired

state and not a desired task. Therefore, a higher level of abstraction is needed to interface

desired tasks to desired states. The strategic controller is one such interface. Many of the

ideas for strategic control come from the successful work of Schneider [27, 28] in applying

strategic control to cooperative manipulation.

By way of example, consider the task of "leaping across the table" as shown in Fig-

ure 4.2. If an initial angle and velocity is given at the time of release, then the task is

well defined. The reason this task is awkward to implement in a single dynamic controller

is because discrete changes in the plant are occuring asynchronously. For example, when

39
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v

Exogenous

Inputs

Actuator

Inputs

D/A ___ZOH

Diagnostic _"_.
Outputs

PLANT

DIGITAL
CONTROLLER

Regulated
Outputs

Sensed

Outputs

Controller

Inputs

_v

Figure 4.1: Classic Digital Controller

A block diagram of the classic digital controller. The inputs may not be
in a convenient form for task level control.

both arms release the bar, the number of degrees of freedom of the system are increased by

four. Furthermore, tasks might require a PD controller, bang-bang controller, a variation

of a computed torque controller, or some combination of the above.

4.2 State Transition Graphs

State transition graphs or state diagrams [10] are one approach to designing a strategic

controller. In this context, one graphically divides a desired task into a set of phases or

finite states. To complete a task or operation, states must be transitioned in a predefined

order. The states need not be transitioned sequentially or only once, but can involve loops

as shown in Figure 4.4. The transition between states can only occur in response to an

external event or stimulus. The event and the current state uniquely determines the next

state.

For example, consider the state diagram shown in Figure 4.3. Each state, represented

pictorially as an oval, must be transitioned in order for the robot to complete a LEAP

maneuver. The arrows correspond to external events. The robot starts off in the "Idle"
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Leap

1.5

i
-0.

_J

-1

-1.5

- .5 - - .5 -2 -1.5 -1 -0.5 0

X (metro)

Figure 4.2: Coordinated Leap Maneuver

The figure shows the Pushoff, Rotation, and Catch phases for a straight

back leap. The robot is going from right to left.

state. Receiving a request to leap causes the robot to enter the "Windup" state. A

"Ready" stimulus is sent (from a different process) when joint angles and joint rates are

within predetermined tolerances, and the "Pushoff" state is entered. The system imparts

momentum to itself by pushing off the bar along a predefined momentum trajectory.

At this point two different events are possible. One possibility is that the system has

achieved the desired final momentum, and so the "Coast" state is entered. The other

possibility is that an error occured, such as a timeout warning or a gripper falling to open.

In this case the "Idle" state is entered and the robot attempts error recovery. If all goes

well, the robot "Tucks" in its arms to reduce its moment of inertia and rotates via the

momentum wheel. Finally the system transitions between the "Approach" state and the

"Catch" state when both grippers grasp the bar. After grabbing the bar, the system is

brought to rest (zero momentum state) and remains in the "Idle" state.

Another example is a crawl task, as shown in Figure 4.4. As one can see from these two

simple examples, complicated locomotion tasks can be easily visualized by drawing state

v
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transition graphs.

Also, error conditions are easily incorporated into the task specification. More com-

plicated error conditions and tasks can also be designed with this technique. The tasks

Momentum

Ready Pushoff Match

Windup Leap/
Desired
Momentum

Momentum
Match Idle

Coast

Catch Tuck

Time

Close

Gripper Angle Check

Approach

Time
Rotate

Attitude Check

Figure 4.3: State Transition Diagram for a Leap Maneuver

described in the state diagrams are implemented in a strategic controller by using state

table programming. Table 4.1 is the corresponding state transition table for the state dia-

gram shown in Figure 4.3. Each input or stimuli determines how the system will transition

from one state to another. After receiving a stimulus, a transition routine 1 is executed

which returns the value for the next state. For example, if the robot is in the "Idle" state

and receives a "Leap" stimulus, the routine "CheckConfig" will be executed. If the robot is

not grabbing the bar, it cannot perform a pushoff, and an error condition is detected. The

routine returns the robot to the idle state with a warning message. If no error condition

is detected, a windup trajectory is planned and executed. Upon successfully exiting the

"CheckConfig" routine, the robot enters the "Windup" state.

_In the actual implementation, each state is assigned a value. A transition routine is a C function that
returns the value for the next state.
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N,J

Start Slide

SlideCM

Move

Left Hand

Move

Right Hand

Start Slide

SlideIdle CM

b,,i°

End Slide Crawl

Move
Left Hand

End Slide

Figure 4.4: State Transition Diagram for a Crawl Maneuver

Stimulican come from a varietyofexternalsources,but never from the strategiccon-

trolleritself.They are,in fact,the input to the controller.In general,they originatefrom

one ofthree places:

1. command stimulifrom the user,such as a Leap stimulus.

2. helperstimuli,which come from externalprocessesthat monitor the system and

report when a conditionor event occurs. For example, a stimulus issent to the

strategiccontrollerwhen the momentum reachesa desiredvalue.

3. hardware stimuli, such a.s watchdog timers.

In the event that an erroneous or unexpected stimulus occurs, a default error handling

routine is executed.
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State Stimulus Transition Routine Next States

Idle Leap CheckConfig WindUp Idle

Windup Ready CalcLeapTrajectory PushOff

PushOff MomentumMatch Release Cost

Time SafeState Idle

Range SafeState Idle

Coast Release ArmTuck Tuck Idle

Tuck Time PID Control Tuck

Ready ActivateWhee] Rotating Idle

Rotating StopRotating SetApproach Approach

Time SetApproach Approach

Approach Grab GraspBar Catch

Catch Time Dock Idle

Table 4.1: State Transition Table

4.2.1 Implementation

The following code fragments show the data structure and declaration of the state table.

All code is written in ANSI C using the GNU C compiler.

#define NANELEN (32)

#define MAXSTIMULI (16) /* Max stimuli branches in one state. */

#define NAXNEXTSTATES (B) /* Max next states for one stimulus. */

/* Data structure definition for a "state" */

typedef struct TaskStateTa g (

char name [WAMELEN] ;

struct StimulusResponseTag '[

int stimulus;

int (*proc) () ;

struct TaskStateTa g *nextState[MAXNEXTSTATES];

} srCMAXSTIMULI];

TaskStateStorage, *TaskState;

/* This entry's stimulus */

/* The associated transition routine. */

/* The set of next

* states */

typedsf struct StimulusResponseTag

*StimulusResponse, StimulusResponseStorage;



v

V

v

v

Chapter 4. Strategic Control 45

/* Forwaxd declaration of the states */

static TaskStateStorage Idle, WLudUp, PushOff, Coast,

Tuck, Rotat ing, Approach, Cat ch;

Having defined the data structure, it is a simple matter to transfer the information

from the state transition table into C. For the Leap task, the code looks like the following:

/* Leap chain */

static TaskStateStorage Idle ffi_"Idle",

_LEAP_STIM, ChsckConfig, {kWindUp, kIdle, kReGrasp}},

{TIME_STIM, SafeState, {kIdle}},

{DEMO_STIMo Thrusting, {kCoast}},

{0UTOFRANGE_STIM, SafeState, {kIdle}},

Go}

static TaskStateStoraEe WindUp = {"WindUp".

{TIME_STIM. CalcLeapTrajsctory, {_PushOff, _Idle}},

{READY_STIM. CalcLeapTrajectory, {_PushOff, _Idle}},

{OUTOFRANGE_STIM. SafeState, {_Idle}},

Go}

4.3 Trajectory Generation

Once the strategic controller is programmed to perform a task, trajectories must be gen-

erated for the dynamic controUer. In order to implement a computed torque or inverse

dynamic control law, the trajectories must be continuous in acceleration. Of course the

term "trajectory" is used here in a very broad sense to describe a generic path. For exam-

ple, one could generate joint trajectories, Cartesian endpoint trajectories, or momentum

trajectories.

Currently, all the trajectories in this research are generated by fifth-order polynomial
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splines.There are theoretical[22,37] as wellas experimental [13,8] studieswhich show

that fifth-orderpolynomial givea good combination of slew time, smooth changes in ac-

celeration,and minimum computation. One motivationfor selectingfifth-ordersplinesis

thatthey are the setoffunctionsthatminimize the mean-square jerk2 overthe trajectory.

Work by Flash and Hogan [8]suggeststhathumans instinctivelyfollowminimum jerktra-

jectorieswhileperforming pickand placetasks.The followingisa derivationto show that

fifth-orderpolynomialsdo indeed minimize the mean-squared jerk.

Let F be a functionthat has continuoussecond partialderivativeswith respectto its

arguments. We wish to findthe functionx(t)that minimizes the expression:

ft0 tl
I = F(t,x,x',x",x')dt (4.1)

where z'denotesdifferentiationofz with respecttot.To minimize I,a necessarycondition

isfor the firstvariationto vanish[11].This can be writtenas:

f_il OF 0F_ , 0F. ,, OF ,,_I = [-_z_x+ _7#ox + _-5z,oz + _zm&z ]dt= 0

Integratingthe lastterm by partsyields:

fi_.OF. OF_ , OF _ . d OF ,, [ OF _ ,,]t,,5i = t_-,_x + _=,ox + _=,,ox - _(o--_)_: ]tit+ [0-_ x j,o = o

Integrating twice more by parts gives:

i' OF d OF d 2 OF ds OF

[ _, , + [ d2OFt Oz"ror d oF ,+ + o, j,o
d OF

dt Ox"

(4.2)

OF ] t_+ _)_z = 0
to

Any function z(t) that minimizes Equation 4.1 must satisfy the Euler equation

OF d OF. _( OF) _ L( OF )
Ox "_(_Tx') + dt 2 0x" dt 30z" = 0

With three natural boundary conditions:

r OF $ ,,1 tl = 0
[0-_ x Jto

d OF OF,g ,]t_( = 0
dtOz" _ ) z ,jto

( dt 2 0#" dt Oz" + = 0

(4.3)

(4.4)

(4.5)

(4.6)

_Jerk is the derivative of acceleration.
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Note that if the unknown function x(t) and its derivatives have prescribed values at the

endpoints, the three natural boundary conditions are satisfied.

We are now ready to solve the for the minimum jerk. This can now be stated as:

minimize g" = I']otl _, dt 3 ] dt

given _.(O),x'(O),x"(O),z(t.t),x'(ty) , and zn(tf ).

Since the conditions at the endpoints are given, the three natural boundary conditions

are satisfied. Therefore, the Euler equation becomes:

dt-'_ Ox''''7 [dt3J ) =0

or

d6_

dr"_ = 0 (4.7)

x(t) = ast s + a4t 4 + a3t 3 + a2t _ + a]t + ao (4.8)

which is the desired fifth-order polynomial. The coefficients a_ are uniquely determined by

the boundary conditions and are given by:

_o = _(0)

al = x'(0)
x"(0)

as --
2

(_"(ts) - 3_"!0))t3- (8_'(tf) + 12_'(0))ts + 20(_(tl) - x(0))
a3 -- 2t_

-(2z"(t.t') - 3x"(O))t_ + (14z'(tf) + 16z'(O))t! - 30(z(tt. ) - x(O))
_Z4 --

a5

2t ,
(_"(tf) - _"(,o))t_- 6(_'(tj) + _'(o))tf + 12(_(t/)- _(o))

= 2t_

Momentum Trajectory Generation Momentum trajectories are used to specify the

position and velocity of the mass center of the robot. For example, while the robot is at rest

in the closed-chain configuration, it could be commanded to "move its mass center 0.15 m

in the right". Since forces are linearly related to the first derivative of momentum, a fifth-

order polynomial is sufficient to specify the path of the mass center through momentum

space. The coefficients of the polynomial are determined by specifying the elapsed time of
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the slew, and the miffs] and fins] position of the mass center. Since the mass center is at

rest at the beginning and end of the slew, all higher order derivative terms are set to zero.

In general, one calculates a momentum trajectory by specifying a time interval, and

initial and fins] momentum states. A momentum state consists of five vectors: the integral

of linear momentum, both linear and angular momentum, and the derivatives of linear and

angular momentum. In two dimensions] Cartesian space, this corresponds to eight distinct

quantities to specify uniquely a momentum state. These desired momentum states cannot

be chosen arbitrarily, for there are constraints on the system such as the location of the

mass center when both arms are grabbing the bar.

The vehicle performs a windup maneuver so as to accelerate the vehicle along the

longest available path. The fins] momentum state at the end of the "windup" becomes

the initial momentum state during "pushoff'. Empirica]]y, it was found that the center

of mass can move s]ong a ray for 0.2 m (A x = .2) with a fins] velocity of 0.1 m/s. The

trajectories were formulated such that the acceleration along the ray was constant. This

assured that all the energy of the vehicle was directed toward imparting momentum to the

system during "pushoff'. With these assumptions and a desired release angi e3 0, the fins]

momentum state can be uniquely determined. Figure 4.5 is a pictorial representation of a

momentum trajectory.

V

4.4 The Switching Problem

When the strategic controller receives a stimulus that an event occurred, such as a change

in the number of degrees of freedom of the system, it should react to this discontinuous

change in the plant in such a way as to achieve smooth transitions. The following descrip-

tion explains why it should always be possible to achieve this transition with rigid-body

manipulators.

While in the closed-chain configuration, the number of degrees of freedom is reduced

because of kinematic constraints. Differentiating the constraint equations gives a linear

constraint in the velocities, or generalized speeds, as was shown in Equation 3.14. Thus,

it is always possible to compute a consistent set of generalized coordinates and generalized

speeds for a rigid body system. When transitions occur, they must be continuous in

position, and can only be discontinuous in velocity as a result of impulsive forces. This

discontinuity in velocity can occur when the tips of the arms grab the bar with a non-zero

3The angle 0 = 0 rsd corresponds to a straight-back pushoif as shown in Figure 6.1.
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Momentum State

Bar

L--

Figure 4.5: A Momentum Trajectory

The arrow represents a possible path of the mass center. To move the

mass center a/ong a path, a fifth-order trajectory is generated from Equa-
tion 4.8. The coefficients are determined by specifying the position of the

mass center, momentum, and derivative of the momentum at the two end-

points of the trajectory. The position of the mass center is constrained by

the lengths of the arms, while the velocity is constrained by link lengths

and maximum torque capability.

velocity and decelerate to zero in "zero time". Of course the state does not go to zero:

only the velocity at each tip does.

In the case of a "soft landing", the relative velocity of the end effector and the target is

zero, and so all the states are continuous during the transition. By calculating a consistent

set of states for the full holonomic system, any controller will have the current estimate of

the state. Thus, when switching from one control law to another, errors in configuration

will not contribute to transient errors in the behavior of the system.

4.5 The Strategic Controller

The strategic controller is executed as a separate process by the real-time operating system.

Most of the time it is blocked on a read, meaning that the processes is idle and waiting for

v
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input. All inputsto the finite-statemachine are in the form ofstimuli.After a stimulus

isreceived,a correspondingtransitionor subroutineisexecuted.These routinescheck on

the physicalconfiguration(open-chainor closed-chain)ofthe robot,and implement a new

model of the system when necessary.The transitionroutinescan alsoinstallnew filters

and controllers,as wellas change gainsin the dynamic controller.

Although thereare many advantages in thisimplementation,itisnot without draw-

backs and limitations.Because the finite-statemachine runs as itsown process,the con-

trollerhas more than one threadofexecution.This presentsproblems forreal-timedebug-

ging and ofllinesimulation.Also,the stimuliarriveasynchronously,yet must be incorpo-

rated with synchronous control.Modern operatingsystems,such as VxWorks, provide a

message-passingfacilitythatperforms the synchronization.

4.5.1 Implementation

The followingcode segment isan ANSI C versionof the finite-statemachine. When a

stimulusisreceived,the finite-statemachine compares the stimuluswith a listof allowed

ones forthe currentstate.Itthen executesthe transitionroutine,and moves to the next

statebased on the transitionroutine'sreturnvalue.

static TaskState State;

static int FSMxid;

boolean FsmVerbose;

static void FSHDriver(int stimulus)

register boolean found = FALSE;

register StimulusResponse st;

register int stimno, retcode;

register TaskState lastState;

lastState = State;

stJ:mo : O;

/* Look up the stimulus */

for(stinmo = O; ; stiauo++) {
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sr = IkState->sr[stJJ:no];

if(sr->st_:ulus == O) {

if (FsmVerbose) {

printf ("FSMDriver: Unexpected stimulus 7_t. \n", stimulus) ;

}

found = FALSE;

break;

}

if((sr->st_-ulus == stimulus)

found = TRUE;

break;

}

II (sr->st_ulus == A_Y_STIM)) {

if (fo_d) {

retcode = (*sr->proc)(stimulus); /* Execute the transition routine. */

State = er->nextState[retcode]; /* Update the State */

}

if (FsmVerbose) {

printf("FSN: _.s--Y.2d--> Y.s\n", lastState->name, stimulus, State->name);

}

/* This daemon exists simply to weave the asynchronous stimuli into a

synchronous stream. Note also that it allows the stimulus routines

to run Unlocked, thus preventing unnecessarily long interrupt

latency. */

static void FSNDaemon ()

{

int stimulus;

while(TRUE) {

read(FSMxid, &stimulus, sizsof(int));

FSMDriver(stimulus);

/* Wait for a stimulus. */

/* Process it. */
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}

}

/* Send a st_ulus to the state machine. WA_NING! This code }_JST be

re-entrant, as it is executed asynchronously by routines of varying

priority. */

static void SendFSMSti_nulus(iut st_ulus)

{

write (FSMxid, _sti_ulus, sizeof (int)) ;

}

52



Chapter 5

Dynamic Control

This chapter describes the various dynamic controllers used in relocating and reorienting

the robot. Because the system undergoes changes in configuration, different controllers

are implemented at different times depending upon the state of the strategic controller

described in Chapter 4. For locomotion, there are two basic quantities of interest to

control:momentum and orientation.Other tasks,such as manipulation,controlendpoint

positionor endpoint force.By formulatingthe equationsof motion as shown in Chapter 3,

the strategiccontrollercan easilyswitchamongst a varietyofcontrollaws which regulate

differentquantities.The basiccontrollersdiscussedin thischapter are:

1. PD and PID controllers to regulate joint angles. This is a robust but crude control

law used to tuck in the arms while the robot is controlling its orientation.

2. Momentum controller to cause the system to follow desired momentum trajectories

discussed in Chapter 4. This controller is used to impart momentum to the system

during a pushoff maneuver or to relocate the mass center during a crawl maneuver.

3. Bang-Bang controller to reorient the attitude of the robot in minimum time.

This chapter outlines a technique for controlling the momentum of a robotic system.

This is accomplished by causing the linear and angular momentum to follow desired momen-

tum trajectories in the presence of kinematic constraints, which occur in closed-kinematic-

chain configurations. This powerful idea facilitates a simple interface between the high-level

strategic controller and the low-level dynamic controller that is "exact" in that it compen-

sates for all dynamic forces. This control paradigm does not involve inversion of the mass

matrix and is amenable to parallel processing, even though the resulting system is not mod-

eled as an "in-parallel system". The system momentum controller has been implemented
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on a free floating robot to perform such maneuvers as pushoff and catch.

In addition, this chapter discusses some of the issues involved in orientation of a free-

flying multi-link system of rigid bodies. While the robot is free-flying, the momentum

is uncontrollable using internal torques and forces as a consequence of the principle of

conservation of momentum. However, conservation of angular momentum results in non-

holonomic constraint equations. It is through these equations that the orientation of the

robot can be controlled.

5.1 PD and PID controllers

Proportional-derivative (PD) and proportional-integral-derivative (PID) control is the clas-

sic standard control law by which new control .laws are judged. Any text on feedback

control such as Franklin and Powell [9] will describe various design techniques for choosing

the velocity and position gains. Its major advantages are simplicity in implementation and

guaranteed stability for passive systems (linear and nonlinear) in the presence of parame-

ter variations. The disadvantage is that no information on the model is incorporated into

the controller, and so performance is usually not as good as with other methods. More

importantly, it is dimcult to incorporate abrupt kinematic changes into a PD design. To

accomplish this, a new controller, called system momentum control was developed.

5.2 Computed-Torque Control

Computed-torque controlor inverse-dynamicscontrolisone type of nonlinearcontroller

designthathas gainedpopularityforcontrolofrigidrobot manipulators.In implementing

a computed torque controller,the controllaw is decomposed into two parts: a model-

based controllaw that linearizesand decouplesthe plant equations,and an error-driven

or servo controllaw that isformed by differencingdesiredand actualvalues[6].A more

generalapproach to linearizingcontrolofnonlinearsystems can be be found by Sastryand

Bodson [26].The followingsectionsdescribethreedifferentvariationsofcomputed torque:

joint-basedcomputed torque,Cartesian-basedcomputed torque,and system momentum

control.

Joint-based computed torque For any n degree of freedom rigid-body manipulator,

the dynamics have the form:

Tr -- M(q)fi-c(q,u)- f(q,u)e=terna I (5.1)
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u = Y(q)il

where the inertia matrix is M E R '_x", c E R '_ is a vector of centrifugal and Coriolis

terms, and fe_ternal E R n is a vector of other forces such as gravity, friction, and external

disturbances. The problem of controlling a nonlinear system such as Equation 5.1 can be

accomplished if one partitions the control law into two parts:

1. = a1.' + _

where 1. fi R" is a vector of joint torques. By choosing

a = T-1M (5.2)

= -T-l(c + (5.3)

The servo law becomes

(Ic "- tld -}"Kv(¢ld - cI) + Kp(qd -- q) (5.4)

1.' = Y/Ic+_zt_ (5.5)

where/lc is the commanded acceleration to the control law and/ld is the desired accelera-

tion. In the absence of any trajectory error, these two quantities would be equal. Figure 5.1

shows a block diagram of the computed-torque control scheme. If the state is chosen to

be q and q, with the forces acting at the joints, and T = Y = I, then Equations 5.2-5.5

become the familiar form found in Craig [6].

Example: Joint-based computed torque for two arm floating robot This exam-

ple shows how to design a computed torque controller for a two arm robot on a floating

base. In this case, there are 8 position and velocity states, but only 5 motors. By par-

titioning the state into controllable a_d uncontrollable parts, one can resolve the torques

necessary to control the quantities of interest as follows. Let:

.q ,.
I

q2 I tt2

zh

qu =

qo

ql

q7

qc = °{/4 11t, =

qs

q6
J

I/0

BI

B7

A

11c "-

113

114

it5

it6

rM_= lUc

Mu¢ i I. _ttt

Yc

+
T_

1" (5.6)
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Figure 5.1: Computed Torque

Block diagram of a computed torque contro]ler [or a genera/rigid body

robot. Dashed lines represent a nonlinear relation between input and

output.

The above equation is just a reordering of the rows of the equations of motion. By

rearranging terms, the vector _. can be solved for in terms of measured or desired quan-

tities.

Key

v

u. = M.-_[c. + Tul" - MT/_c] (5.7)

-1
By recognizing that the term M_M,,,,Tu is zero for the free-flying LEAP system, the

computed torque equation becomes:

-r T'[I {[Mc_ -1 T • -I= - Mc_M.,,M_]u¢ + [M_M.. cu -c¢]} (5.8)

Everything is known to cMculate r except/_c. To calculate/_c let:

uc = Y, { ild + K_(Cld -- ilc) + Kp(qd - qc)} (5.9)

The major difference between a fixed-base and free-flying robot is the singularity of

the T matrix. In the case of free-flying robots, the momentum of the system cannot be

controlled by internal motors, and so the number of actuators is less than the number of

states. If one uses thrusters to control momentum, the two cases can be treated the same.
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Cartesian-based Control In many situations,one isinterestedin specifyinga trajec-

toryofthe tipofa manipulator,and not the motion ofthejointsthemselves.In thiscaseit

ismore convenientto formulatethe controllaw in Cartesianspaceinsteadof JointSpace.

Such a controlisalsocalledOperational-SpaceControl [I,18].

Startingfrom the basicequationsofmotion given in Equation 5.1

TI" = M(q)_ -c(q,u)- f(q,u)e=,e,na l

v = J(q)u (5.10)

where v E R _ isa vectorof translationaland rotationalvelocitiesof the end-effectorin

Cartesianspace and J(q) E R '_x_,calledthe Jacobian,isa matrix that relatesgener-

alizedvelocitiesu in joint-spaceto Cartesian-spacevelocitiesv at the end-effector.By

differentiatingEquation 5.10and substitutingintoEquation 5.1,

a = = +

- /I(q,u)u ÷ f(q,u)ezte , sl÷ TT) (5.11)

where a is a vector of accelerations at the tip. Note that the derivative J(q, u) of the

Jacobian is a function of both q and u because of the linear dependence between q and

u. The commanded torques at the joints can be derived by substituting for a the desired

endpoint accelerations ad.

r = T-1A'l(q)J-l(q){ad--_l(q,u)u)- T -1 {c(q,u)÷ f(q,u)e_t_,_a, )

The Jacobian isgenerallyinvertableexcept where the manipulator approaches a sin-

gular configuration.For a redundant manipulator,the solutionisnot unique,and further

constraintsor objectivescan be imposed upon the system to uniquely determine the re-

quiredtorquesto cause the desiredtipaccelerations.

r

5.2.1 System Momentum Control

The momentum of a system of bodiesisa welldefinedquantitythat iseasilycalculated

[15].Being a functionofvelocity,mass and moment ofinertiaofthe system,the calculation

of momentum (both linearand angular) does not change with kinematic constraints.In

the caseof a free-flyingrobot,the totalmomentum isconstantor conservedwhile floating

freelyinspace,but isnot conservedwhileconnectedtothe space stationI.The ideabehind

system momentum controlistocausea multi-bodysystem tofollow,momentum trajectory

lit is assumed thst the space station is so massive that it appears to the robot as inertially fixed.



_.k

Chapter 5. Dynamic Control 58

untila finaldesiredmomentum stateisreached.At thatpoint the system changes from a

closed-chainconfigurationtoan open-chainconfiguration(releasingfrom the space station)

with the desiredfinalmomentum• Momentum controldiffersfrom traditionalrobotic

controlpoliciesinthatinsteadofcontrollingone ormore statevariables(positionorvelocity

of a jointor tip),itforcesthe momentum of the entiresystem to followa commanded

momentum trajectoryas describedin section4.3.

The controllerconsistsoftwo parts.The firstpartcombines the dynamical relationship

between desiredmomentum and the generalizedaccelerations(,iterms) with the closed-

kinematic-chainconstraints.This isanalogous to the servo part of the computed torque

controller.Having solvedfora consistentsetofgeneralizedaccelerations,the jointtorques

are then computed•

Momentum Error Equation Given a momentum trajectoryas outlinedin Chapter 4,

an errorequation can be writtenas:

= L=_ + KM,,(L=_ - L=) + KI,/(LxuL= Lr)dt (S.12)

= + - Lv)+ - L )d*Lv
• CM • CM

H, = H,, + KM,(H= cM - HcM) (5.13)

where the subscript "d" denotes desired quantities, L is the linear momentum and H is

the angular momentum expressed in the inertial fraxne. The momentum gains KM de-

termine the placement of the closed-loop poles, while Ld corresponds to the feedforward

term. Note that Equations 5.12-5.13 describe type 1 error equations in momentum [24, 9],

and cannot take out steady-state errors in position 2. By adding another integral term to

Equation 5.12, the system will exhibit zero steady-state error in position. Steady-state

errors in position of the mass center arise when sir tubes and wires running through the

robot exhibit a constant spring force on the arm joints. Equation 5.13 does not have an

integral term, because angular momentum gives rise to nonholonomic constraint equations.

Nonholonomic equations require path dependent integration, and are not analytically inte-

grable. Since orientation can be controlled independently of angular momentum, the total

linear momentum of the system was controlled to be zero.

Resolving Generalized Accelerations Having determined the commanded momen-

tum, the next step is to resolvethe generalizedaccelerations.This is accomplished by

2The integral of linear momentum can also be expressed msthe total mass times the position of the mass
center.
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substituting Equation 3.15 into Equation 3.29 and solving for u, as follows:

• bl -co

£" b2 - cl =

• cM 7 CH= .b3-_i=2 i

2

2 7 •
_,-=o MI,_, + _,=3 Ml,t=,

7 2 • 7 7
_i=2 E s=3

A,,u, + b,

(5.14)

Like the previous methods of computed torque, system momentum control is another

way of finding or specifying a consistent set of generalized accelerations.

Solving for Joint Torques

Having derived a consistent set of commanded accelerations, the last step in the control

law is to resolve the joint torques. It is quite common for the solution to this problem to be

overconstrained. This means that there is an infinite set of allowable torques that will give

the desired accelerations. To find an unique solution, additional objectives must be imposed

on the problem. One objective that is commonly used is to minimize the 2 norm of r. For

autonomous vehicles with limited battery supply, this objective corresponds to minimizing

the total power consumed. Other objectives include minimizing the 1 norm or the infinity

norm, which correspond to minimizing total current and peak torque respectively. For low

order systems, it is very computationaUy efficient to solve the least squares problem for _"

using Equation 3.18.

5.3 Practical Issues With Computed Torque

In the derivation of computed torque controllers, certain assumptions were made that

impact the design and performance of the system. The following paragraphs describe the

two major limitations: continuous time derivation and knowledge of the entire state.

Sample Rate and Computational Delays In all the derivations for computed torque,

it is assumed that the plant and control law are running in continuous time and that there

is zero time delay for computation. At first glance, it is unclear what the impact this

assumption has on the stability and performance of nonlinear systems. The answer to

these questions depends on the type of system, the complexity of the system, the actuator

authority, and the available computer power. For example, Uhlik [36] has experimentally

shown that for a fixed-base two-link arm with elastic drives, a sample rate of 50 Hz was

insufficient to stabilize his system with a desired closed-loop bandwidth of 2 Hz. The
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problem stems from the fact that the system needs to be sampled at 30 to 50 times the

highest natural frequency to insure stabi_ty. Because fixed-base robots do not suffer to the

same degree as space robots for weight and power constraints, terrestrial high-performance

systems can be built where actuator authority is practically unlimited. For example, in the

experiment described in [36], applying maximum torque to the shoulder or elbow motors

would permanently deform the springs in the drive-train. Therefore, his system was not

actuator limited. This can be contrasted with a space-robot, whose acceleration will be

small compared to peak motor torque during a "push-off" maneuver.

For rigid body systems, Wampler [37] asserts that one needs to sample at 30 to 50 times

the desired closed-loop bandwidth. For a bandwidth of 1 Hz, this amounts to a sample period

of 20 to 30 milliseconds. Of course bandwidth is not necessarily the criterion one should

use in evaluating control performance. For linear systems, closed-loop bandwidth denotes

the ability of the system to track sinusoidal inputs. It can be defined as the input frequency

at which the output amplitude is 3 dB below that of the input amplitude. This definition

is a bit arbitrary, and one needs to question its relevance in selecting sample rates.

The problem isthatthe definitionofbandwidth assumes a linearsystem and therefore

does not account for nonlineareffectssuch as actuator saturation.For small-amplitude

inputs,the "closed-loop"bandwidth could be much higherthan forhigh-amplitudeinputs

due to saturation.The need forgood disturbancerejectioncan alsodrivea designto high

closed-loopbandwidth. Yet in space,externaldisturbanceswillbe smallinmagnitude and

frequency content. Therefore,the issuesthat drivesample ratesare not bandwidth, but

actuatorauthority,desiredtasks,and system dynamics. One shouldsample 30 to 50 times

the largestdesired/achievablefrequencycontentof the states.

Lack of Knowledge of the Plant and State The second assumption in using computed-

torque control is knowledge of the entire state. This requirement is not as much an issue

for robotic manipulators, since most of the states are single degree of freedom joints. The

joint positions can be accurately measured with optical encoders 3 or RVDT sensors, and

rate information can be inferred from these signals or estimated using extended Kalman

filters (EKF). The hardest states to measure are the orientation and position of the base

body. Global positions are measured in the laboratory using an offboard vision system.

In space, inertial navigation systems using laser gyros and accelerometers combined with

differential GPS could give centimeter accuracy in base position.

_CommerciM encoders can measure angles of 77# radians and angular velocity ranging from 0.07 to 4.0

radians/sec to a few percent accuracy.
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5.4 Bang-Bang Control

During free-flight, a bang-bang control law was used to perform large angle slews. This

control law is optimal in the sense that it produces the minimum time solution to a linear

system with limited actuator authority. The derivation is well known (See Bryson [3]), and

only the results are given here. If vs is the torque applied by the momentum wheel motor,

then

where -T, nax _ rs _< T, nax and I is the effective moment of inertia about the system center

of mass. To prevent chatter after reaching the final attitude, a simple PID control law was

employed to regulate the attitude. In the phase plane, this control law will take the robot

from any initial angular velocity and angle to zero angular velocity and angle by applying

full torque (either positive or negative) and switching at the appropriate time to full torque

in the opposite direction.

E:= J

5.5 In-Parallel Systems

Consider the two systems shown in Fig 5.2. Both drawings show six-bar linkages that form

a closed-kinematic-chain configuration. The major difference is the location of two motors,

which in one case is inertially fixed, and in the other body fixed on a free-floating target.

Fig 5.2a is called an "in-parallel system", because cutting the chain at points "A" and "B"

results in two independent two link manipulators. Schneider [27] has taken advantage of

this configuration to design a parallel control algorithm that implements object impedance

control. Specifying desired accelerations and measuring the external forces at the tips

uniquely determines the applied torques to the motors.

This same method does not work in Fig 5.2b. If the links are cut at points "A" and

"B", the resulting Jacobians are singular for the two arms because the torque from a motor

cannot exert a force at zero distance, but only at a finite distance away. Therefore a cut

cannot occur at a motor. If the links are cut at points "C" and "D", the two shoulder motors

are still coupled through the dynamics of the floating base. Systems can be decoupled if

the cuts result in topological tree structures whose roots are inertially fixed and whose

Jacobians are not singular.

Finally, the position or velocity of an object or a link is not important for locomotion,

but rather the position and velocity of the system of bodies. For this reason, a different

approach will be taken to control kinematically coupled systems of rigid bodies that does
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(a) (b)

Figure 5.2: In-Parallel Systems

The location of actuators determines bow easily a closed-kinematic-chain

system can be paral]e]ized.

not involvetakingadvantage ofan in-parallelsystem,but ratherincorporatesthe kinematic

constraintswith the dynamic equationsofmotion.
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Experimental Results

In this chapter, experimental results are presented for the momentum controller whose

design is described in Chapter 5. These results are intended to verify the design and

predicted performance. A comparison is made between simulation and experiment to see

how well the model predicted the actual behavior of the robot.

This chapter is divided into two sections: results for an entire LEAP maneuver, and

results for joint PD, bang-bang control, and momentum control.

6.1 An Entire LEAP Maneuver

Figure 6.1 is a montage of an actual LEAP maneuver. The robot was commanded to leap

straight-back a distance of 3.66 meters, and to complete this task without using thrusters.

To accomplish this, the strategic controller guided the robot through the various phases of

the maneuver as described below.

Upon receiving the command to leap, along with a desired final momentum state, the

robot entered the "Wind-up" phase. After the "Wind-up" phase, the robot accelerated

along a straight path, releasing the bar when the velocity of the mass center reached

100 mm/s.

After releasing the bar, the robot brings its arms into a tuck position and rotates

180 degrees . During this period, no attempt is made to control the momentum of the

system or to correct for errors in location of the mass center. The angular position of the

base is controlled using bang-bang control (minimum time slew) with feedback from an

onboard angular rate sensor to a momentum wheel. When rotation is complete, the arms

are extended to prepare for landing.

Finally, when both arms grasp the bar, the robot is commanded to stop by implementing
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Figure 6.1: Coordinated Leap Maneuver

The figure shows the Pushoff, Rotation, and Catch phases for a straight

back leap. The robot is going from right to left.

an error equation in momentum only. When the momentum is below a specified threshold,

the robot returns to its ready position for another task. With the current experimental

setup, the robot can position itself to within 70 mm over a 3.66 m distance without the

need for midcourse correction.

Various other angles of departure, between 0 deg and 15 deg were tried. In each case,

the robot landed to within 70 mm of the desired location. Limitations in the experimental

setup prevented executing launch angles beyond 15 deg. Due to large asymmetries in

off-axis pushoffs, one arm imparts the majority of the momentum to the system. With

the current link lengths and peak torque capabilities of the motors, a release velocity of

100 mm/s or greater is not possible for departure angles beyond 20 deg. For slower release

velocities, grounding effects in the air bearing dominate the experimental results. Of course

leaping is but one form of thrusterless locomotion. To translate sideways, crawling might

be a preferred method.
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6.2 Joint PD and Bang-Bang Control

Although this research focuses on combining different control laws to perform a high level

task, each subtask needs to be experimentally verified before the system as a whole can

be evaluated. Figure 6.2 shows a plot of the fight-shoulder and right-elbow joints going

through commanded 73 degree and 95 degree slews. This maneuver is identical to an arm

tuck, which the robot performs to minimize its moment of inertia. The control law is a

simple PD error law wrapped around each joint.

Although it insures stability, the PD control law is not designed to give high perfor-

mance for a nonlinear system. No attempt was made to model the system or to compensate

for steady state errors. The steady state errors can dearly be seen in Figure 6.2 as the

difference between desired position (the dashed lines) and the measured position. A PID

control law was also designed which eliminated the steady state error. Since the only

function of this control law was to move the arms into a tuck position, great accuracy

in position and trajectory following was not necessary, and the performance was deemed

adequate.

The desired trajectories are formulated as fifth-order polynomials to ensure smooth

transitions in angular acceleration as well as in angular velocity and position.

ed(t) = ast s + a4t 4 + a3t 3 + a2t 2 + alt + ao

_d(t) = 5ast 4+4a4t 3+3a3t 2+2a2t+al

Od(t) = 20ast 3 + 12a4t _ + 6a3t + 2a2

If the initial and final angles are 0_ and 0I, and t/is a desired elapsed slew time, then the

six unknown coefficients ai axe given by:

a0 - ei

al -" ei

&
(12 --

_13 --

_14 _-_

a5 "-

2

(0S - 30,)t_ - (S0! + 120_)t I + 20(01 - 0,)

-(20! - 3ei)t_ + (14t_! + 16ei)t! - 30(t_/- ei)

- - 6(ej+ + 12(el-

It is important to specify acceleration profiles on lightweight arms to prevent the jerkyness
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Figure 6.2: Nominal Slews of a PD Controller for a Two Link Arm

A series o£ 3.5 second slews were commanded to each joint separately.

The dashed fines represent desired va/ues, while the solid lines show ex-

perimentally measured data. While position tracking is good, velocity

tracking is rather poor. Coupling between joint results in large variations

in torque (bottom plots).
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associatedwith largechanges in acceleration.Actually,humans tend to followminimum

jerkI trajectorieswhile performing pickand placetasks[8].

The base orientationwas controlledby a differentmethod: the time-optima]bang-bang

controller.Both angularpositionand angular velocityofthe base were used to determine

whether the momentum wheel motor should supplymaximum positiveor maximum neg-

ativetorque. Figure 6.3 shows the orientationand angular velocityfor a 180 deg slew.

During the slew,the arms were regulatedabout a 45 deg angle.The degradationin the

measurement resultsfrom chatterwhilethe controllerisregulatingabout zero.For a sys-

tem with a smallT,,_=/I(Seesection5.4),the peak accelerationsare small;inertiaactslike

an accelerationfilter.Therefore,the system does not experiencejerky motions between

maximum changes ininput torque.The Tr_,_=/lratiois0.164rad/sec2 inthe nominal tuck

configuration.In an actualleap maneuver, the bang-bang controllaw isswitched offafter

reaching the desiredangle,and a simple PD controlleris instMled to regulatethe final

orientationof the base.

l

i 0

"40 I0 12 14 16 18 20

Time(s)

0.2
0

s

_ -0.2

< -0.4

= -0.6
0 16 18 20

I | I I I t
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Figure 6.3: Orientation and Angular Velocity of the Base for
Minimum Time Slew

1Jerk m the derivative of acceleration.
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6.3 Momentum Control

Figure 6.4 shows the response of the system to a step command in the position of the mass

center. This test was performed to experimentally verify that the feedback part of the

control law caused the system to behave like a second order system with damping ratio

( - 0.8 and natural frequency w = 1.7 rad/sec. The slight deviation between experimental

and predicted behavior is clue to unmodened friction effects in the air-tubing and wiring

that run through the arms. Figure 6.5 shows a comparison between desired, simulated and
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ID
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_ -0.625

-0.63

-0.635

-0.64
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l i
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Time (s)

I0

v

L :v

Figure 6.4: Response To Step Input

Plot of the center-of-mass position to a commanded step input. Also

plotted is the ideal response of a second order system to a step input.

This plot shows excellent agreement between the theoretical and actual

error-equation pole positions (dashed vs. solid line). This plot demon-

strafes that under momentum control, the system will respond to errors

in trajectory tracking like a second-order system.

experimentally measured positions and velocities for the mass center during the windup

and pushoff phases. The steady-state error in position at point B, the end of the windup,

is due to the air tubes applying a torque to the elbow joints. Since there is no integral error

in position, the result was a small steady state error. However, no such error occured in

v
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momentum, since there is integral error in momentum, and the system tracked the desired

momentum trajectory well. At point C, the robot released the bar and floated to the other

side of the table.
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The position and velocity of the mass center of the robot is plotted during

the pushoff phase.
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Extensions to Three Dimensions
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Thus far, most of the discussion has focused upon locomotion in two dimensions. Although

laboratory experiments were performed in two dimensions, many of the ideas easily extend

to three. The derivation of the equations of motion, the design of the strategic controller

and the momentum controller readily extend to three dimensions, and require no modifi-

cation to the theory. Issues that do need to be addressed involve orientation and vehicle

design.

This chapter is divided into three sections. The first section deals with an abstract

treatment of orientations of deformable bodies. By using purely geometric arguments, the

net rotation can be calculated from a set of path dependent motions. The second section

describes a method of performing attitude control using a fifth-order trajectory in Euler

parameters and resolved acceleration or computed torque. The last section describes some

design considerations when going from two to three dimensions.

7.1 Orientation in 3 Dimensions

Although the total angular and linear momentum of an object is constant in the absence

of external forces and torques, the orientation of that object need not be constant. Studies

have been done [17, 14] which demonstrate arbitrary orientation with zero angular momen-

tum. A more general treatment of the subject was done by Shappere and Wilczek [30],

which presented a kinematic formulation of this problem in terms of a gauge structure over

the space of shapes that a body may assume. Their work is presented here along with

some comments on how it might be applied to three dimensional robotic design•

Consider the set of all possible shapes of a deformable body, which we will call con-

figuration space. Each point in this space corresponds to a unique shape with orientation

and position of the mass center. This set can be partitioned into equivalence classes by an

71
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equivalencerelation;shapes that differonly in centerof mass locationand orientationare

equivalent.When no externalforcesact on a body, the centerof mass isunchanged for

every shape in configurationspace.Thus we willwork in the centerof mass frame,where

the space oflocatedshapesisjustthe space of unlocatedshapes withorientation.

An example willhelp to illustratesome of theseideas. Consider a deformable body

consistingof a hinge,separatedby an angle0, where 0 _<0 < 7r.An equivalenceclassof

unlocated shapes isthe setof allshapes with the same angle 0 as shown in Figure 7.1.

The questionwe wish to answer is:what isthe net rotationor change in orientationthat

0 = 10 deg

0 = 90 dcg

0 = 120 dcg

V

m

Figure 7.1: Equivalence Class of Unlocated Shapes

The set of possible shapes can be partitioned into equivalence classes of

shapes that differ only in orientation. The shapes in the boxes were chosen

to be the standard shapes for that class.

resultswhen a deformable body goes through a givensequence of unorientedshapes in the

absence of externalforcesor torques? The net rotationcan be computed by making use

of the law of conservationof angular momentum. This nonholonomic constraintwillbe

sufficientto determine fullythe net rotationof a deformable body.

Suppose one has chosen a setof standard body-flxedreferenceaxes foreach possible

unorientedshape. This isaccomplished by choosingone shape from each equivalenceclass

and assigning an arbitrary dextral set of x, y, z axes. Therefore, a standard shape is one

point of the equivalence class of located shapes corresponding to an unlocated shape. In

our example, the shapes inclosed in a square box comprise the set of standard shapes. For a
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given sequence ofthese standard shapes So(t),we wish to findthe correspondingsequence

of physicallyorientedshapes S(t),which are relatedby the rotationmatrix R(t):

S(t) = R(t)So(t) (7.1)

where R(t) isa 3 x 3 rotation(directioncosine)matrixwhich depends on the referenceaxes

forSo(t).Of coursethe path of physicalshapes S(t)should be invariantto the arbitrary

choiceofstandard shapes.Ifone were to choose a differentsetof standard shapes:

= n[So]So (7.2)

then the new rotation matrix would be:

k(t) = (7.3)

to insurethat S(t)isunchanged.

dR

dt

R(t) =

One can write a differential equation in R(t) by defining:

R R- W =- RA (7.4)

exp fj A(r)dr (7.5)

The matrix A can be thought of as an operator on R which maps an infinitesimal defor-

mation of So(t) into an infinitesimal rotation. It can be shown that A, also known as the

angular velocity matrix is skew symmetric, meaning that only 3 of the nine elements are

independent. This fact will become very useful in subsequent calculations with A. Equa-

tion 7.5 is actually invariant under arbitrary time rescalings, suggesting that one should be

able to write Equation 7.5 in a completely geometric form. To see why this is so, consider

a mapping t --, f(t). Then dt ---, ]dt while l _ All since:

A(f(t))

A(f)//

= R-l(f(t))dR_(t))= R-l(f(t))dR(f(t))?dr(t) J

= R-l(f)_f f)

Dynamics of a free body The dynamics of a body in the absence of any external forces

or torques is completely determined by the conservation of momentum laws. Without loss

of generality, consider the total angular momentum to be zero.

If one considers a body consisting of a collection of N point masses ml... m N at

positions z _ ... x/v, then the total angular momentum of the system is:

N

Hi = eiik _ m('gz('_)_ ('_) (7.6)j k
_t----1



Chapter 7. Extensions to Three Dimensions 74

v

L
v

where _ijk is the permutation symbol in three dimensions with i, j, k taking on values 1,

2 or 3, and:

eijk = 0 if two suffLxes are equal.

Eijk = 1 if ijk is an even permutation of the sequence 123.

_ijk = -1 if ijk is an odd permutation of the sequence 123.

An identity which is useful for tensor cross products in three dimensions is [34]

_,nrae,nvq = _rv6aq - 6rq_av (7.7)

where 6ij is the Kroniker delta taking the value 1 when i = j and 0 otherwise.

Recall that the unlocated shapes are related to the oriented shapes at time t by the

relation:

x(n)(t) = R(t)_(")(t) (7.8)

where R(t) is a 3 × 3 rotation matrix. Substituting Equation 7.8 into Equation 7.6 gives

an expression of the angular momentum in terms of £,(,0 and R(t).

mO O [ ! ('_ R_,£:In)/_k,_'O] (7.9)
n----I

By setting Hi = 0 in Equation 7.9, multiplying by R -2 and performing some algebra, one

obtains:

A(t)ij = (R-1R)ij = --_ijkwk = eijkI_l/I; (7.10)

where ] is the inertia tensor of standard shapes So(t), and 1_ is the apparent angular

momentum of So(t) at time t:

N

hi _'= _ m(")((:_('_))26k1-"k';('0:_(")'_t] (7.11)
'n----.1

N

/]rt /'= _tJ} E ,,--('0z'(n)_'(n)._j_} (7.12)
n-----1

where use has been made of Equation 7.7 and the f_t that A(t) is skew symmetric. Equa-

tions 7.10 and 7.5 provide a complete solution to the problem of determining net rotation

of a deformable body.

For a multi-body space robot, the calculation of A can be computed in a more con-

venient form by making use of Equation 3.24. Notice that this equation is linear in ui,

the generalized speeds. If one orders the ui such that the first three generalized speeds

correspond to the measure numbers of the angular velocity vector given in Equation 7.24,

then

Hi = Zijwj + finUn
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where i,j - 1,2,3 and n - 4...N where N is the number of degrees of freedom of the

system. If the angular momentum is zero, then

ml --

wi - li,nI,,_nu,_ (7.13)

A(,) =

0 --603 a_

w3 0 -wl

-w2 0_1 0

(7.14)

7.2 Attitude Control in 3 Dimensions

In spacecraft attitude control, the equations of motion are usually linearized about a fixed

desired orientation. This is a very good assumption while regulating about a fixed attitude,

and the literature is full of examples on how to'implement 3-axis attitude control. The

problem becomes more complicated when performing rapid slews from one orientation to

another. Typically, the satellite is rotated about each principal axis independently, until

the desired final orientation is achieved. In this way both the kinematics and the dynamics

are decoupled into a set of linear equations. This technique presupposes that the torque

vector is aligned with a principal axis of the spacecraft and that all other cross terms in

the angular velocity vector are zero.

In orienting a space robot, the problem is complicated by the fact that the principal

axes change with configuration. Therefore, one should not expect momentum wheels or

other torque devices to align with any particular geometry of the robot. Even if the

torque vectors were aligned with the principle axes, one would like to specify an initial and

final orientation, and have the robot reorient itself in one smooth continuous maneuver.

One method proposed by Dwyer [7] transforms the equations of motion to exhibit linear

input-output behavior. The following section outlines a scheme for general 3 dimensional

attitude control of a free-flying robot. By combining this method with system momentum

control, the user has an unified approach to thrusterless space robotic locomotion in three

dimensions.

Consider the problem of rotating a rigid body from an initial orientation Oi to a final

orientation 0 f. A theorem due to Euler on rotation states that every change in relative

orientation of two rigid bodies can be produced by means of a simple rotation [16]. Let A

be a unit vector parallel to the axis of rotation, and $ be the angle of rotation. Then four

scalar quantities, _1,..., _4, called Euler parameters 1, can be defined as:

,_ O (7.15)e --Xsin

IThe Euler Parametersshouldnotbeconfusedwiththepermutationsymbolc,jhofSection7.1.

F_



Chapter T. Extensions to Three Dimensions 76

(i - e. al - e- bl (i = 1,2, 3) (7.16)

z_ 0
e4 = cos- (7.17)

2

where O.l,a2,a 3 is a dextral set of orthogonal unit vectors fixed in inertial space, with

bl,b2,b3 fixed in the body reference frame. The EuIer parameters are not independent,

but must satisfy the condition:

4= i-4-4-4 (7.18)

The Euler parameters can also be expressed in terms of direction cosines as follows:

cij a,. bj (i,j = 1,2,3)

E4 "- 2(1jrCll+C22jrC33)_

C32 - C23
{;1 "-

4Q

C13 - C31
E2 --

4E4

C21 - C12
e3 -

4e4

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

If one defines the angular velocity vector A_B of B relative to A as:

Aw B ix= Wlbl Jr w262 Jr w3b3 (7.24)

then the relation between the measure numbers wi of angular velocity and the derivatives

of the Euler parameters can be given as:

zx ]T (7.25){; "- [ E1 _2 {;3 {;4

A
w = [wl w2 to3 0 ]T (7.26)

and

E __

e4 --E3 E2 _1

e3 e4 --q e2

--{;2 E1 E4 E3

--{;1 --E2 --{;3 E4

(7.27)

1

= _Ew

w = 2ETt

(7.28)

(7.29)
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The derivations for the above equations can be found in [16]. Two other quantities of

interest are the derivatives of Equations 7.28 and 7.29 which will be needed for control.

They are:

1

= 2(Ew + Ed_) (7.30)

= 2(ET_ + ETa) (7.31)

The last equation can be written in a slightly more compact form as:

t,J1

_J2

_3

=2

_4 _3 --E2 --_1

--E3 E4 El --E2

E2 --_I _4 --E3

oo

_2

°o

£3

(7.32)

7.2.1 Desired Trajectories in Euler Parameters

Consider the task of reorienting a rigid body from an initial orientation and angular velocity

to a final orientation and angular velocity at some time t! later. One could easily cause

the path to follow a fifth order trajectory such as:

_d(t) = aist s -t- a_4t 4 ÷ ai3t 3 + ai2t 2 + a_lt ÷ a_o (i = 1, 2, 3) (7.33)

where the aij would be determined by the initial and final conditions as described in

Appendix 4.3. The fourth Euler Parameter, c4 can be solved in terms of the other three

parameters as follows:

c4 -- _l-e l-el-e32 (7.34)

£4 "-- --(EI_'I "_" E2_'2 + _3_'3)/e4 (7.35)

_:l -" --(el_i + e2t2 + e3_3 + _'12 "_" E'22 "_" E'32 "_" E_I2)/E4 (7.36)

where e4 _ O. Should e4 = 0 and _'4_ O, then2:

e'42 = -(E1_i + E2(_ + e3_ + _'I2 + E'_2 + _'32)

£:t "- -(3(_'1_1 -I- _'2Q -I- E'3_3) JC EI{;_3) Jr (;2E_3) Jr"E3E(33))/3E'4

7.2.2 Error Equation in Euler Parameters

Similar to the error equation in momentum, an error equation can be written in terms of

the Euler Parameters. By substituting the values of e and w into Equation 7.28, the error

2This is the case when the Rodrigue8 parameter8 axe infinite. The parameter ¢4 is zero when rotating

through an angle of _" radians _bout an axbitr_wy line.
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equations becomes:

(,o = E;_ + K_,(_ - _) + Kp,(_ d - _) (i= 1,2,3) (7.37)

where the subscript c denotes commanded input to the controller and the subscript d

denotes the desired value of the Euler parameter. Using the values of (_'cand Equation 7.32,

one can calculate _. By formulating the dynamical equations of motion in such a way that

the set of generalized velocities includes the angular velocity terms _o, (e.g. ui = _i i = 1,

2, 3) one can solve for the torques by the computed torque method described in Chapter 5.

7.3 Design Criteria In Three Dimensions

The experimentsconducted inthisresearchwere carriedout in two dimensions.Obviously,

space robots that work and move in space willhave to be designed to operate in three

dimensions. This sectiondiscussessome of the issuesinvolvedin operating a free-flying

space robot in threedimensions.

An important issueisthe number of arms and degreesoffreedom per arm thatshould

be incorporated intoa space robot. Manipulating an object requiresat leastsix DOF

(degreesof freedom). Ifmultiplearms cooperate,then each arm is not requiredto pos-

sesssix DOF. For example, in the plane,two two-linkSCARA arms can manipulate a 3

DOF floatingtarget. Redundancy can be put to good use only at the costof increased

mechanical and computational complexity.Also,exertinglargetorquesat the tipsof the

manipulators requireshigh gearingand largemotors. This problem can be reduced by us-

ing the mechanical advantage availablewithmultiplearms. Using a pairoffourDOF arms

along with a simple three DOF arm would constitutean eighteenDOF robot. Although

controllingan 18 DOF system seems very difficultwith existingcomputers, many tasks

could decouple the controlproblem. For example, ifone arm was attached to the space

station,itsmotors along with threereactionwheelscould controlattitudewhile the other

arms manipulated a target.The motion of the arms could be treatedas disturbanceson

attitudecontrol,thus decouplingthe two controlsystems. This isequivalentto the work

done in controlling mini-manipulators on a flexible base [19].

In addition to manipulating an object, the arms can be used to relocate/reorient the

robot. It can be shown that one arm possessing six degrees of freedom is sufficient to

perform a "pushoff" or "catch" task while connected to a structure through a ball joint 3

Angular momentum about the ball joint is constant, since no external forces or torques are

imparted on the vehicle about that point. However, forces are transmitted through the ball

3The idea of using only one arm for locomotion was suggested to the author by Prof. DeBra of Stanford
University.
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joint,so that upon release,one can achievea desiredmomentum state.One disadvantage

of thisapproach isthatlargejointtorquesmay have to be appliedby the arm to bring the

system to rest.

The two-arm approach demonstrated in thisthesiseasilygeneralizesto three dimen-

sions.With two two-linkarms, the robot can controlitsmomentum in a plane.With the

aid of one more momentum wheel to initiallyalignthat plane in a desireddirection,the

robot can effectivelycontrollinearmomentum in threedimensions. Angular momentum

controlin threedimensions requiressome modificationsto the arms, sincea screw motion

isnot possiblewith planar SCARA arms.

Locomotion tasks are easierto perform in space than on earth. In the absence of

gravity,the robot does not become unstable when one or more arms (legs)releasefrom

the bar. Using threelegsto crawl along a trussstructurecan be easilyaccomplished by

using a combination of endpoint controlto repositionthe tipsand momentum controlto

move the mass center.Leaping from one pointto another can be done in threedimensions

as was demonstrated in two dimensions. The only concern iswhat would happen ifthe

robot missed the destination.One possibilityisto have a tetherattached to the space

structureat the pointof release.Ifthe maneuver was successful,a computer onboard the

space stationcould releasethe lock,and the robot could reelin the tether.Otherwise,the

robot could reelitselfback to the originalstartingpointand try again.Another option is

to use thrustersformidcourse corrections.
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This Chapter is divided into two sections: A summary of the research presented in this

dissertation, and recommendations for future research. Some of the generic contributions

of the work are noted in Chapter One.

8.1 Summary

This thesis comprised an experimental study of the issues involved in thrusterless locomo-

tion for space robotic systems. Two major topics were addressed: design and implementa-

tion of dynamic controllers, and use of strategic control to carry out task level commands.

Momentum Control A new method for controlling the dynamic behavior of a rigid-

body system was developed. Called system momentum control, this method allows one to

specify momentum trajectories instead of Cartesian-space or joint-space trajectories. This

was shown to be very useful in controlling systems whose plant dynamics changed abruptly

due to kinematic constraints. The feedforward portion of the controller allows for smooth

trajectory following and improved performance, while the feedback portion allows errors to

decay exponentially. This approach is amenable to systems with limited actuator authority

that could saturate with large feedback gains.

Current space robotic design and research has focused primarily on issues of object

manipulation. Thus, one assumes that the objects are in the workspace of the manipulators.

For fixed automation in a structured environment, this assumption may not constrain the

effectiveness of the robotic system. However, in space, a fundamental limitation is the

ability to overlap the task's location with the robot's workspace. Designing mobility into

the task specification instead of constraining the workspace increases the robot's usefulness.

The research presented here focuses on the issues of mobility and locomotion.
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A new approach to space robot locomotion was presented which obviates propulsion

as the primary means of imparting momentum to the robot: Instead of using thrusters,

judicious use is made of the arms to transfer momentum to the robot from various struc-

tures in the environment. A multi-arm robot can push off or grab onto a structure, thereby

imparting momentum to itself. This cooperative two-arm maneuver would be exceedingly

difficult to perform by manually controlling the arms because of the nonlinearities in the

plant and the time-critical path that must be followed. Leaping from one location to an-

other introduces complexities in dynamics and controller design as the robot's configuration

changes from closed-kinematic chains to open-kinematic chains. By focusing on controlling

momentum, a configuration-independent quantity, system momentum control allows the

robot to leap precisely from one place to another while accounting for nonlinear forces and

kinematic constraints.

Combining system momentum control with operationai-space control allows for ad-

ditional capabilities such as crawling. Combining different forms of locomotion such as

leaping and crawling reduces that accuracy needed by a single aspect in the overall maneu-

ver. For example, to relocate the robot to within 10 mm over a 50 m leap would require

an accuracy in pushoff angle of 0.2 mrad without midcourse correction. If the target area

is large enough so that the robot can land 200 rain away and crawl to the desired location,

the initial accuracy required is reduced by a factor of 20. This may not always be leasable,

but should be considered when designing the robot and the environment in which it will

work.

Strategic Control A strategic controller allows for a higher level of abstraction in formu-

lating and implementing desired tasks, instead of commanding desired states. Implemented

as a finite-state machine, the strategic controller provides a mechanism for switching be-

tween synchronous dynamic controllers based upon asynchronous events. Combining a

strategic controller with a dynamic controller proved to be a very powerful method for

specifying tasks that switch between various control laws during discrete changes in kine-

matic constraints. This method is also compatible for manipulation tasks and thus fits into

an overall framework for combining the various capabilities of a space robot.

A two-arm free-floating robot was constructed which successfully demonstrated many

aspects of thrusterless locomotion. By floating on an air-bearing, the robot simulates the

zero-g drag-free environment of space in two dimensions. The addition of a momentum

wheal and special end-effectors allows the robot to relocate and reoriented itself, without

thrusters, in a precise and accurate manner. This can be used to good advantage in space,

where the cost of propellant, a finite resource, will ultimately determine the usefulness of

mobile robots. Other benefits from reduced thruster usage include a cleaner environment,

higher reliability and reduced cost.
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Although many new features were incorporated into the current-generation space robot,

some problems still remain. The air gap beneath the vehicle is only 50.8/_m thick, so dust

particles from the room cause localized grounding of the base plate. It is very difficult to

remove all dust and other small particles from a large surface without moving to a clean

room environment. An electrostatic air cleaner was installed to remove particles down to

0.01 micron diameter, but this approach has led to mixed results. Therefore, experiments

involving gross motions such as leaping across the table are difficult to perform repeatably.

The current ethernet communication link is via a fiber optic cable. Even with one

vehicle, the cable often gets fouled around the vehicle. This situation will be exacerbated

when multiple vehicles cooperate together. The obvious solution is to install wireless

ethernet transceivers on the robots. This technology will become available in the near

future.

Lastly, heavy current usage on the batteries greatly reduces shelf life and increases

internal resistance. NiCd batteries perform best when supplying a small steady current.

This is not the case during a pushoff maneuver, when peak current is demanded for short

periods of time. Two possible solutions to this problem are gearing the motors to increase

the effective torque or installing higher power density batteries, such as sodium sulphur

batteries.

8.2 Recommendations for Future Research

No piece of research is complete in itself. It is hoped that this work will provide some

answers as well as raise new questions to many of the problems associated with space

robot locomotion. This section explores some possible extensions for future research.

=_

8.2.1 Enhancements to the Robot

The designand constructionof the free-flyingrobot isa continuingprocess. Severalen-

hancements should be made to the improve itsperformance and capabilities.The most

important component thatshouldbe added isa visionsystem. This willallowforaccurate

vehiclepositionatalltimes,not justwhen the robotisin contactwith the bar. Also,accu-

rateendpoint positioninformationwillallowobjectmanipulation tasksto be incorporated

with leapingand crawling.

The difficultiesmentioned above need to be addressed.The fiber-opticlinkshould be

replacedwith a wirelesslinkasthe technologybecomes available.A differentregulatorand

flow meter to allowgreaterflowrateto the airbearingwillallowa largerairgap, reducing

the possibilityof grounding. New batteriesand power converterswillallowfor a second

CPU board and more digitalelectronics.
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8.2.2 Adaptive Control and System Identification

All computed torque schemes are model referenced, requiring knowledge of system inertial

parameters. While this is a reasonable assumption for a baseline design, large changes in

inertial parameters could affect performance. Forexample, if the robot were to fetch a large

tool, the changes in center of mass location could cause sufficient errors in the control law

for it to miss the target. The robustness of the system would be improved if an adaptive

identification of inertial parameters were incorporated into the control law.

8.2.3 Locomotion in Three Dimensions

The methods presented in this thesis readily extend to three dimensions. However, without

experimentation, it is unclear how well these ideas can be implemented on a free-flying

robot. Some technical issues that need to be addressed are:

. Three dimensional sensing systems that will locate the robot, endpoint, and target

position and orientation in real-time. Although three dimensional vision systems do

exist, they are significantly more difficult to implement than planar systems. Also,

vision systems tend to give very poor velocity information, because pixel information

is quantized. Combining low cost INS sensors such as laser gyros with differential

GPS could provide centimeter position information with smooth velocity estimates.

The exponential rise in performance for microprocessors has not been paralleled by

a similar rise in performance for space-qualified processors. For a variety of reasons,

including limited market and bureaucratic inertia, industry has been slow to imple-

ment the next-generation 32 bit space-qualified computer. This could be one of the

major impedements to testing many new ideas and algorithms in space. Current

space-qualified microprocessors are one to two orders of magnitude too slow, with

onboard memory capabilities four to ten times too small.

8.2.4 Optimal Trajectory Generation

The fifth-order momentum trajectories were generated based upon the heuristic argument

of modelling the robot as a point mass and accelerating that point in a desired direction.

It is possible that another trajectory, having the same final momentum state, would be

better. This would involve solving the Hamilton-Jacobi equations for a nonlinear system

with limited actuators and geometric constraints. Because the problem is not convex,

there is no guarantee of achieving global minimization. One of the features of computed

torque is that it is trajectory-error based, so that any twice-differentiable function can be

incorporated into the control law.
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Another issue that needs further study is finding trajectories to take advantage of the

ability of the robot to reorient itself without changing its angular momentum. As was

shown in Chapter 7, the change in attitude is related geometrically to the path of shape

changes. Finding optimal paths that cause large attitude changes for "small" shape change

would be useful. It may turn out that reaction wheels or CMG's would be more practical for

orientation control than relying on shape changes. On the other hand, some combination

of shape changes and reaction torques may be better for some problems. This is a very

fertile area with interesting theoretical as well as practical implications.

8.2.5 Multiple Vehicle Cooperation

Many tasks that are difficult to perform with one robot may be easier to accomplish with

two or more robots. For example, assembling a large space structure composed of long

slender beams is not amenable to being accomplished by only a single robot. Coordinating

and managing multiple robots in an efficient manner is an interesting problem. Issues that

need to be addressed include collision avoidance, distributive control strategies, parallel

processing, and momentum management of multiple vehicles. For example, if two or more

vehicles were to attach themselves to a free beam, it might be desirable to achieve zero net

change in the beam's momentum. Using system momentum control, the momentum of each

vehicle could be controlled at "pushoff" time so that when both robots attach themselves

to the beam, the net momentum of the system is zero.



Appendix A

Calibration

V

Automated and semi-automated calibration procedures were developed for the joint angle

sensors, pseudo-rate joint signals, angular rate sensor, and motor torque outputs. These

routines collect data to be processed by Pro-Matlab, and provide a nice environment for

data collection and analysis. This appendix describes how the various components of a

free-flying robot are measured and calibrated.

v

A.1 Joint Angle Sensor Calibration

Calibrating joint angles on a free:flying robot is considerably harder than on a fixed-base

robot. Most robotic applications desire knowledge of the manipulator endpoint, and so

by fixing the endpoint in inertial space, one can back out the joint angles (assuming no

redundancy) from inverse kinematics. For a free-flying robot, fixing the endpoint of the

arms does not uniquely determine the arm's joint angles, since there are extra degrees of

freedom in the base.

To circumvent this problem, a calibration fixture was constructed that could be attached

to the robot in a repeatable manner. The fixture consisted of 32 holes drilled in a 1/8"

aluminum sheet covering most of the workspace. A steel peg is placed through the tip of

the arm to center it over a desired hole. Originally, the plate was designed such that only

one joint at time changed angle as the arm moved in an arc over a subset of calibration

holes. Only when the plate is attached perpendicular to the robot's axis of symmetry would

this happen. Therefore, before any data was taken, one could be sure that the calibration

plate was attached in a known and repeatable manner.

The joint angle calibration program prompts the user to position the tip in a numbered

hole. It then uses inverse kinematics to calculate the actual joint angles (shoulder and

elbow) for each location. A user specified number (usually 250) of measured points are

v
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L.
v

averaged at each location, and stored in a file with the actual measurement. A linear

regression least-squares fit is performed to yield scale factor and offset. To further reduce

the nonlinear effects of the sensor, a forth order polynomial fit is performed on the output

of the least-squares fit.
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Figure A.l: Joint Calibration

The least-squares data was filtered through a [ourth order polynomJa_ to
[urther reduce errors due to nonlinearities in the sensor.

A.2 Joint Velocity Sensor Calibration

After all the joint angles axe calibrated, joint velocity calibration is performed. This is

a completely automated procedure, whereby the arms axe slewed through the workspa£e
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under PD control while the velocity signals are integrated. By comparing the integrated

velocity signal with the measured slew angle, the scale factor and offset for the pseudo-

differentiated rate signal can be computed.

=i

v

A.3 Model Parameter Measurements

Control methods such as computed torque and momentum control are model based and

depend upon an accurate knowledge of the dimensional parameters of the plant. These

include mass, center of mass location, joint location, and moment of inertia for each body.

The masses of each body were weighted on an electronic scale to approximately 0.1 gram,

while all lengths were machined to a tolerance of :t:0.005 inches. The location of the mass

center was determined by balancing the object on two knife edges, and measuring the

resulting force under each end. A simple static force/torque equilibrium calculation yields

the position of the mass center.

Inertias for all the bodies except the base were measured with a trifLlar pendulum,

described in Appendix A of [13]. Briefly, the apparatus consists of an aluminum triangular

plate, suspended from the ceiling by three wires. After the instrument is calibrated, a test

object of mass m is placed on the plate such that the object's mass center and the plate's

center are coincident. For small displacements, the period of oscillation, w, is related to

the moment of inertia, 1, by the equation:

,W
"" V I£

where l is the distance from the center of the plate to the suspension wires,/; is the length

of the support wires, and g is the acceleration of gravity. A good estimate of the inertia is

obtained by averaging over then periods of oscillation. This procedure was automated by

Stan Schneider and Larry Pfeffer, and is described in [29]. Comparison between measured

inertias and those predicted by the CAD software package IDEAS [33] agree to 1%.

The base inertia was measured by a different means because its size and weight were

too large for the trifilar pendulum. The base was floated with the arms set in a nominal

tuck position. The moment of inertia of the system about the mass center can be derived

from:

where 0 and 0 are the angular position and rate of the base, T is the torque applied by

the momentum wheel motor, and I is the inertia of the system. Knowing the inertia of the

arms, one can derive the moment of inertia of the base. Using this method, it is estimated

that the base inertia is known to about 7%.



Appendix B

Air Bearing

The following is a simplified derivation of an air bearing. Readers interested in a more

detailed treatment on the subject should see Rehsteiner [25].

When solving most fluid mechanics problems, certain assumptions axe made in order

to solve the nonlinear Navier-Stokes equations. In this problem, we wish to derive the

equations for an air bearing. The geometry of the problem consists of a source between two

flat plates of radius to, with the top plate having a plenum radius r_. It is assumed that the

r
o

h - gap thickness Pi

Figure B.I: Air Bearing

fluid is Newtonian (#o = constant) and incompressible (P0 = constant). Furthermore, based

88
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on the geometry,we assume axisymmetric steadyflow.These assumptions correspond to

0
-- = 0 steadyflow
Ot

l_z = U 0 : 0

0--0 = 0 axisymmetric flow

0P

0-'_"= 0 neglect gravity

With these assumptions, the incompressible Navier-Stokes equations [35] can be for-

mulated in cylindrical coordinates in the radial direction as:

1_ r li)uoOu=(ru,) + ;-_- + 0--z- = 0 (B.1)

Our 1 OP [02ur 1 Our ur 1 02ur"
ur'b'T = po0r + 2_0[ 0r2 + r 0r r2 + -_20z2 (B.2)

Equation B.1, the conservation of mass equation, simplifies to:

18
r_r(ru,) - 0 (B.3)

(B.4)f(z)

r

where f(z) is an unknown function of z yet to be determined. Substituting this result into

Equation B.2, the momentum equation, and simplifying yields:

1 0P = f(z)_____ + _0 02f(z)
po Or r 3 r Oz 2

The first term on the right corresponds to momentum transfer due to inertial forces. Be-

cause the flow is laminar and slow, this term can be neglected, leaving just the second and

dominant term. Physically, the equation relates the radial pressure drop due to the viscous

force on the _uid. Integrating the above equation with respect to z yields:

1 OP z 2
+ c,(,-),_+ C_(r)= -_f(z) (B.S)po

Where Cl(r) and C2(r) are two unknow functions of r. If one now considers the case of a

stationary base, the boundary conditions become f(h/2) = f(-h/2) = 0 which is the "no

slip" condition at the two surfaces. Recall that h is the gap or thickness of the aJr-bearing.

Substituting the boundary conditions into Equation B.5 gives:

c_(_) = 0
-10P h _

C2(r) =
2po 0r 4

f ( z ) -- 2-_o _r z2 -

v
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The last equation is a function of z only, imposing the condition:

8P

r-_- = C3 a constant

e(_) = c3 _(_/ro) r_< _ < _o

For the air bearing to support the weight of the robot 1

rag = / PdA

fo2'rf r°= C31n(r/ro)rdrde + lrC3r_ln(ri/ro)
i

from which we can solvefor the constant C3. The velocityprone can now shown to be:

One lastquantityof interestisQ, the flowrate.This can be calculatedas:

h/2 2,_f
Q = a-hl2Jo urrdOdz

#

_ _rC3h3 (B.6)
6g.o

Equation B.6 shows why it is so difficult to increase the gap height of the air bearing: the

flow rate is proportional to the cube of the gap thickness.

aIt is also assumed that the pressure under the plenum is constant with a value of P(ri)
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